Richard Neubig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7420517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on Terms and Symbols in Quantitative Pharmacology. Pharmacological Reviews, 2003, 55, 597-606.	16.0	536
2	International Union of Pharmacology. XLVI. G Protein-Coupled Receptor List. Pharmacological Reviews, 2005, 57, 279-288.	16.0	452
3	Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature, 2007, 449, 721-725.	27.8	396
4	Acetylcholine and local anesthetic binding to Torpedo nicotinic postsynaptic membranes after removal of nonreceptor peptides Proceedings of the National Academy of Sciences of the United States of America, 1979, 76, 690-694.	7.1	352
5	Regulators of G-Protein signalling as new central nervous system drug targets. Nature Reviews Drug Discovery, 2002, 1, 187-197.	46.4	351
6	Membrane organization in Gâ€protein mechanisms. FASEB Journal, 1994, 8, 939-946.	0.5	344
7	The Highly Conserved DRY Motif of Class A G Protein-Coupled Receptors: Beyond the Ground State. Molecular Pharmacology, 2007, 71, 959-964.	2.3	322
8	International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the Recognition and Nomenclature of G Protein-Coupled Receptor Heteromultimers. Pharmacological Reviews, 2007, 59, 5-13.	16.0	274
9	International Union of Basic and Clinical Pharmacology. LXXXVIII. G Protein-Coupled Receptor List: Recommendations for New Pairings with Cognate Ligands. Pharmacological Reviews, 2013, 65, 967-986.	16.0	250
10	International Union of Pharmacology. LVI. Ghrelin Receptor Nomenclature, Distribution, and Function. Pharmacological Reviews, 2005, 57, 541-546.	16.0	215
11	Structure of Cα _q -p63RhoGEF-RhoA Complex Reveals a Pathway for the Activation of RhoA by GPCRs. Science, 2007, 318, 1923-1927.	12.6	206
12	IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels. Nucleic Acids Research, 2009, 37, D680-D685.	14.5	199
13	CCG-1423: a small-molecule inhibitor of RhoA transcriptional signaling. Molecular Cancer Therapeutics, 2007, 6, 2249-2260.	4.1	189
14	International Union of Basic and Clinical Pharmacology. XC. Multisite Pharmacology: Recommendations for the Nomenclature of Receptor Allosterism and Allosteric Ligands. Pharmacological Reviews, 2014, 66, 918-947.	16.0	189
15	M4 Muscarinic Receptor Signaling Ameliorates Striatal Plasticity Deficits in Models of L-DOPA-Induced Dyskinesia. Neuron, 2015, 88, 762-773.	8.1	183
16	Small Molecule Protein–Protein Interaction Inhibitors as CNS Therapeutic Agents: Current Progress and Future Hurdles. Neuropsychopharmacology, 2009, 34, 126-141.	5.4	164
17	Regulator of G protein signaling proteins: novel multifunctional drug targets. Journal of Pharmacology and Experimental Therapeutics, 2001, 297, 837-45.	2.5	156
18	Novel Rho/MRTF/SRF Inhibitors Block Matrix-stiffness and TGF-β–Induced Fibrogenesis in Human Colonic Myofibroblasts. Inflammatory Bowel Diseases, 2014, 20, 154-165.	1.9	155

#	Article	IF	CITATIONS
19	A Point Mutation in Gαo and Gαi1Blocks Interaction with Regulator of G Protein Signaling Proteins. Journal of Biological Chemistry, 1998, 273, 12794-12797.	3.4	152
20	Redox Modification of Nuclear Actin by MICAL-2 Regulates SRF Signaling. Cell, 2014, 156, 563-576.	28.9	142
21	Conformations of Torpedo acetylcholine receptor associated with ion transport and desensitization. Biochemistry, 1982, 21, 3460-3467.	2.5	141
22	Immunofluorescence localization at the mammalian neuromuscular junction of the Mr 43,000 protein of Torpedo postsynaptic membranes Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 5230-5234.	7.1	140
23	Inhibition of Myocardin-Related Transcription Factor/Serum Response Factor Signaling Decreases Lung Fibrosis and Promotes Mesenchymal Cell Apoptosis. American Journal of Pathology, 2015, 185, 969-986.	3.8	138
24	AT1 Receptor Mutant Lacking Heterotrimeric G Protein Coupling Activates the Src-Ras-ERK Pathway without Nuclear Translocation of ERKs. Journal of Biological Chemistry, 2002, 277, 9268-9277.	3.4	131
25	Fluorescent BODIPY-GTP Analogs: Real-Time Measurement of Nucleotide Binding to G Proteins. Analytical Biochemistry, 2001, 291, 109-117.	2.4	130
26	Identification of Small-Molecule Inhibitors of RGS4 Using a High-Throughput Flow Cytometry Protein Interaction Assay. Molecular Pharmacology, 2007, 71, 169-175.	2.3	123
27	A Spatial Focusing Model for G Protein Signals. Journal of Biological Chemistry, 2003, 278, 7278-7284.	3.4	121
28	Guanine nucleotide effects on catecholamine secretion from digitonin-permeabilized adrenal chromaffin cells Journal of Biological Chemistry, 1986, 261, 10182-10188.	3.4	120
29	Receptor-selective Effects of Endogenous RGS3 and RGS5 to Regulate Mitogen-activated Protein Kinase Activation in Rat Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2002, 277, 24949-24958.	3.4	115
30	RAC1P29S Induces a Mesenchymal Phenotypic Switch via Serum Response Factor to Promote Melanoma Development and Therapy Resistance. Cancer Cell, 2019, 36, 68-83.e9.	16.8	104
31	Mechanism of agonist and antagonist binding to .alpha.2 adrenergic receptors: evidence for a precoupled receptor-guanine nucleotide protein complex. Biochemistry, 1988, 27, 2374-2384.	2.5	101
32	Guanine nucleotide effects on catecholamine secretion from digitonin-permeabilized adrenal chromaffin cells. Journal of Biological Chemistry, 1986, 261, 10182-8.	3.4	101
33	Novel form of crosstalk between G protein and tyrosine kinase pathways. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5417-5421.	7.1	93
34	Receptor and Membrane Interaction Sites on $\hat{Gl^2}$. Journal of Biological Chemistry, 1996, 271, 3336-3339.	3.4	92
35	Endogenous RGS Protein Action Modulates μ-Opioid Signaling through Gαo. Journal of Biological Chemistry, 2003, 278, 9418-9425.	3.4	92
36	Targeting the Myofibroblast Genetic Switch: Inhibitors of Myocardin-Related Transcription Factor/Serum Response Factor–Regulated Gene Transcription Prevent Fibrosis in a Murine Model of Skin Injury. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 480-486.	2.5	92

#	Article	IF	CITATIONS
37	Binding of an alpha 2 adrenergic receptor third intracellular loop peptide to G beta and the amino terminus of G alpha Journal of Biological Chemistry, 1994, 269, 27618-27624.	3.4	91
38	REGULATORs OF G PROTEIN SIGNALING & amp; DRUGS OF ABUSE. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2005, 5, 30-41.	3.4	86
39	N-Terminal Residues Control Proteasomal Degradation of RGS2, RGS4, and RGS5 in Human Embryonic Kidney 293 Cells. Molecular Pharmacology, 2007, 71, 1040-1050.	2.3	84
40	Regulators of G Protein Signaling Proteins as Targets for Drug Discovery. Progress in Molecular Biology and Translational Science, 2010, 91, 81-119.	1.7	84
41	Rapid Kinetics of Regulator of G-protein Signaling (RGS)-mediated Gαi and Gαo Deactivation. Journal of Biological Chemistry, 2000, 275, 33497-33503.	3.4	83
42	Endogenous RGS Proteins and Gα Subtypes Differentially Control Muscarinic and Adenosine-Mediated Chronotropic Effects. Circulation Research, 2006, 98, 659-666.	4.5	83
43	The novel alpha-2 adrenergic radioligand [3H]-MK912 is alpha-2C selective among human alpha-2A, alpha-2B and alpha-2C adrenoceptors. Journal of Pharmacology and Experimental Therapeutics, 1994, 271, 1558-65.	2.5	81
44	Binding of an alpha 2 adrenergic receptor third intracellular loop peptide to G beta and the amino terminus of G alpha. Journal of Biological Chemistry, 1994, 269, 27618-24.	3.4	79
45	Inverse agonist activity of agouti and agouti-related protein. Peptides, 2003, 24, 603-609.	2.4	77
46	Pleiotropic Phenotype of a Genomic Knock-In of an RGS-Insensitive G184S Gnai2 Allele. Molecular and Cellular Biology, 2006, 26, 6870-6879.	2.3	75
47	GPCR-OKB: the G Protein Coupled Receptor Oligomer Knowledge Base. Bioinformatics, 2010, 26, 1804-1805.	4.1	74
48	Movement disorder in <i>GNAO1</i> encephalopathy associated with gain-of-function mutations. Neurology, 2017, 89, 762-770.	1.1	73
49	Determinants of Gi11 [±] and $1^{2}1^{3}$ Binding. Journal of Biological Chemistry, 1998, 273, 7934-7940.	3.4	71
50	Cellular Mechanisms of Tissue Fibrosis. 8. Current and future drug targets in fibrosis: focus on Rho GTPase-regulated gene transcription. American Journal of Physiology - Cell Physiology, 2014, 307, C2-C13.	4.6	71
51	Reversible, Allosteric Small-Molecule Inhibitors of Regulator of G Protein Signaling Proteins. Molecular Pharmacology, 2010, 78, 524-533.	2.3	70
52	Two peptides from the alpha 2A-adrenergic receptor alter receptor G protein coupling by distinct mechanisms. Journal of Biological Chemistry, 1991, 266, 11025-9.	3.4	70
53	Thinking Outside of the "RGS Box― New Approaches to Therapeutic Targeting of Regulators of G Protein Signaling: Fig. 1 Molecular Pharmacology, 2010, 78, 550-557.	2.3	67
54	G _i Activator Region of α _{2A} -Adrenergic Receptors: Distinct Basic Residues Mediate G _i versus G _s Activation. Molecular Pharmacology, 1999, 56, 1005-1013.	2.3	66

#	Article	IF	CITATIONS
55	Walker A Lysine Mutations of TAP1 and TAP2 Interfere with Peptide Translocation but Not Peptide Binding. Journal of Biological Chemistry, 2001, 276, 7526-7533.	3.4	65
56	Thrombin and Lysophosphatidic Acid Receptors Utilize Distinct rhoGEFs in Prostate Cancer Cells. Journal of Biological Chemistry, 2004, 279, 28831-28834.	3.4	65
57	Stimulation of Cellular Signaling and G Protein Subunit Dissociation by G Protein βγ Subunit-binding Peptides. Journal of Biological Chemistry, 2003, 278, 19634-19641.	3.4	64
58	A mechanistic review on GNAO1-associated movement disorder. Neurobiology of Disease, 2018, 116, 131-141.	4.4	62
59	A Juxtamembrane Mutation in the N Terminus of the Dopamine Transporter Induces Preference for an Inward-Facing Conformation. Molecular Pharmacology, 2009, 75, 514-524.	2.3	61
60	Optimization of novel nipecotic bis(amide) inhibitors of the Rho/MKL1/SRF transcriptional pathway as potential anti-metastasis agents. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3826-3832.	2.2	61
61	Multiple Gi protein subtypes regulate a single effector mechanism. Molecular Pharmacology, 1991, 40, 707-11.	2.3	61
62	Design, synthesis and prostate cancer cell-based studies of analogs of the Rho/MKL1 transcriptional pathway inhibitor, CCG-1423. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 665-672.	2.2	60
63	RGS inhibition at Gα _{i2} selectively potentiates 5-HT1A–mediated antidepressant effects. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11086-11091.	7.1	60
64	Detection of G Protein-selective G Protein-coupled Receptor (GPCR) Conformations in Live Cells. Journal of Biological Chemistry, 2013, 288, 17167-17178.	3.4	60
65	A newly identified complex of spinophilin and the tyrosine phosphatase, SHP-1, modulates platelet activation by regulating G protein–dependent signaling. Blood, 2012, 119, 1935-1945.	1.4	57
66	Agonist and antagonist binding to alpha 2-adrenergic receptors in purified membranes from human platelets. Implications of receptor-inhibitory nucleotide-binding protein stoichiometry. Molecular Pharmacology, 1985, 28, 475-86.	2.3	57
67	Membrane reconstitution of high-affinity .alpha.2-adrenergic agonist binding with guanine nucleotide regulatory proteins. Biochemistry, 1987, 26, 3664-3672.	2.5	56
68	A Nanomolar-Potency Small Molecule Inhibitor of Regulator of G-Protein Signaling Proteins. Biochemistry, 2011, 50, 3181-3192.	2.5	55
69	Nonadrenergic [3H]idazoxan binding sites are physically distinct from alpha 2-adrenergic receptors. Molecular Pharmacology, 1990, 37, 65-8.	2.3	55
70	Mutagenesis and peptide analysis of the DRY motif in the α2A adrenergic receptor: evidence for alternate mechanisms in G protein-coupled receptors. Biochemical and Biophysical Research Communications, 2002, 293, 1233-1241.	2.1	52
71	RGS/Gi2α interactions modulate platelet accumulation and thrombus formation at sites of vascular injury. Blood, 2010, 116, 6092-6100.	1.4	52
72	Local delivery of novel MRTF/SRF inhibitors prevents scar tissue formation in a preclinical model of fibrosis. Scientific Reports, 2017, 7, 518.	3.3	52

#	Article	IF	CITATIONS
73	Compartmentation of receptors and guanine nucleotide-binding proteins in NG108-15 cells: lack of cross-talk in agonist binding among the alpha 2-adrenergic, muscarinic, and opiate receptors. Molecular Pharmacology, 1993, 43, 434-43.	2.3	52
74	Timing is everything. Life Sciences, 2000, 68, 647-658.	4.3	51
75	Receptorâ^'G Protein γ Specificity: γ11 Shows Unique Potency for A1Adenosine and 5-HT1AReceptorsâ€. Biochemistry, 2001, 40, 10532-10541.	2.5	51
76	Inverse Agonist Activity at the α _{2A} -Adrenergic Receptor. Molecular Pharmacology, 2001, 59, 532-542.	2.3	51
77	Molecular Cloning and Characterization of a Novel Regulator of G-protein Signaling from Mouse Hematopoietic Stem Cells. Journal of Biological Chemistry, 2001, 276, 915-923.	3.4	51
78	RGS-Insensitive G-Protein Mutations to Study the Role of Endogenous RGS Proteins. Methods in Enzymology, 2004, 389, 229-243.	1.0	51
79	Galanin Receptor 1 Has Anti-proliferative Effects in Oral Squamous Cell Carcinoma. Journal of Biological Chemistry, 2005, 280, 22564-22571.	3.4	51
80	Resistance to Diet-Induced Obesity and Improved Insulin Sensitivity in Mice With a Regulator of G Protein Signaling–Insensitive G184S Gnai2 Allele. Diabetes, 2008, 57, 77-85.	0.6	50
81	Agonist-directed trafficking of porcine alpha(2A)-adrenergic receptor signaling in Chinese hamster ovary cells: I-isoproterenol selectively activates G(s). Journal of Pharmacology and Experimental Therapeutics, 2000, 294, 539-47.	2.5	50
82	International Union of Pharmacology. LXXII. Recommendations for Trace Amine Receptor Nomenclature. Pharmacological Reviews, 2009, 61, 1-8.	16.0	49
83	Receptorâ^'Antagonist Interactions in the Complexes of Agouti and Agouti-Related Protein with Human Melanocortin 1 and 4 Receptorsâ€,‡. Biochemistry, 2005, 44, 3418-3431.	2.5	47
84	Fluorescent guanine nucleotide analogs and G protein activation. Journal of Biological Chemistry, 1994, 269, 13771-8.	3.4	47
85	Assembly of High Order Gαq-Effector Complexes with RGS Proteins. Journal of Biological Chemistry, 2008, 283, 34923-34934.	3.4	46
86	Complementary Cell-Based High-Throughput Screens Identify Novel Modulators of the Unfolded Protein Response. Journal of Biomolecular Screening, 2011, 16, 825-835.	2.6	44
87	MScreen: An Integrated Compound Management and High-Throughput Screening Data Storage and Analysis System. Journal of Biomolecular Screening, 2012, 17, 1080-1087.	2.6	44
88	Increased CD39 Nucleotidase Activity on Microparticles from Patients with Idiopathic Pulmonary Arterial Hypertension. PLoS ONE, 2012, 7, e40829.	2.5	43
89	NMR Structure of the Second Intracellular Loop of the α2A Adrenergic Receptor: Evidence for a Novel Cytoplasmic Helixâ€,‡. Biochemistry, 2002, 41, 3596-3604.	2.5	42
90	Requirements and ontology for a G protein-coupled receptor oligomerization knowledge base. BMC Bioinformatics, 2007, 8, 177.	2.6	42

#	Article	IF	CITATIONS
91	High-Throughput Screening for Small-Molecule Inhibitors of LARC-Stimulated RhoA Nucleotide Binding via a Novel Fluorescence Polarization Assay. Journal of Biomolecular Screening, 2009, 14, 161-172.	2.6	42
92	Pharmacokinetic optimitzation of CCG-203971: Novel inhibitors of the Rho/MRTF/SRF transcriptional pathway as potential antifibrotic therapeutics for systemic scleroderma. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1744-1749.	2.2	42
93	Real-time Detection of Basal and Stimulated G Protein GTPase Activity Using Fluorescent GTP Analogues. Journal of Biological Chemistry, 2005, 280, 7712-7719.	3.4	41
94	Analyzing Binding Data. Current Protocols in Neuroscience, 2010, 52, Unit 7.5.	2.6	41
95	Small Molecule Inhibitors of Regulators of G Protein Signaling (RGS) Proteins. ACS Medicinal Chemistry Letters, 2012, 3, 146-150.	2.8	41
96	Selectivity and Anti-Parkinson's Potential of Thiadiazolidinone RGS4 Inhibitors. ACS Chemical Neuroscience, 2015, 6, 911-919.	3.5	41
97	COVID-19—A Theory of Autoimmunity Against ACE-2 Explained. Frontiers in Immunology, 2021, 12, 582166.	4.8	41
98	Interdomain Interactions Regulate GDP Release from Heterotrimeric G Proteins. Biochemistry, 1999, 38, 13795-13800.	2.5	40
99	Endogenous RGS proteins modulate SA and AV nodal functions in isolated heart: implications for sick sinus syndrome and AV block. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2532-H2539.	3.2	40
100	Phase-Locked Signals Elucidate Circuit Architecture of an Oscillatory Pathway. PLoS Computational Biology, 2010, 6, e1001040.	3.2	40
101	Rho-mediated signaling promotes BRAF inhibitor resistance in de-differentiated melanoma cells. Oncogene, 2020, 39, 1466-1483.	5.9	40
102	Inhibition of adenylate cyclase is mediated by the high affinity conformation of the alpha 2-adrenergic receptor. Molecular Pharmacology, 1988, 34, 814-22.	2.3	40
103	Peptides as probes for G protein signal transduction. Cellular Signalling, 1994, 6, 841-849.	3.6	39
104	Allosteric Inhibition of the Regulator of G Protein Signaling–Gα Protein–Protein Interaction by CCG-4986. Molecular Pharmacology, 2010, 78, 360-365.	2.3	39
105	Effect of Circulating Epinephrine on Platelet Function and Hematocrit. Hypertension, 1995, 25, 1096-1105.	2.7	39
106	Polyplexed Flow Cytometry Protein Interaction Assay: A Novel High-Throughput Screening Paradigm for RGS Protein Inhibitors. Journal of Biomolecular Screening, 2009, 14, 610-619.	2.6	38
107	Analysis of Guanine Nucleotide Binding and Exchange Kinetics of the <i>Escherichia coli</i> GTPase Era. Journal of Bacteriology, 2000, 182, 3460-3466.	2.2	37
108	Endogenous Regulator of G Protein Signaling Proteins Suppress Gαo-Dependent, μ-Opioid Agonist-Mediated Adenylyl Cyclase Supersensitization. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 215-222.	2.5	37

#	Article	IF	CITATIONS
109	Spermine in semen of male sea lamprey acts as a sex pheromone. PLoS Biology, 2019, 17, e3000332.	5.6	37
110	Regulators of G protein signaling (RGS proteins): Novel central nervous system drug targets. Chemical Biology and Drug Design, 2002, 60, 312-316.	1.1	36
111	Detection of G Proteins by Affinity Probe Capillary Electrophoresis Using a Fluorescently Labeled GTP Analogue. Analytical Chemistry, 2003, 75, 4297-4304.	6.5	36
112	Ligand-Receptor-G-Protein Molecular Assemblies on Beads for Mechanistic Studies and Screening by Flow Cytometry. Molecular Pharmacology, 2003, 64, 1227-1238.	2.3	35
113	Pharmacological Inhibition of Myocardin-related Transcription Factor Pathway Blocks Lung Metastases of RhoC-Overexpressing Melanoma. Molecular Cancer Therapeutics, 2017, 16, 193-204.	4.1	35
114	Gain-of-function mutation in Gnao1: A murine model of epileptiform encephalopathy (EIEE17)?. Mammalian Genome, 2014, 25, 202-210.	2.2	34
115	5-Aryl-1,3,4-oxadiazol-2-ylthioalkanoic Acids: A Highly Potent New Class of Inhibitors of Rho/Myocardin-Related Transcription Factor (MRTF)/Serum Response Factor (SRF)-Mediated Gene Transcription as Potential Antifibrotic Agents for Scleroderma. Journal of Medicinal Chemistry, 2019, 62. 4350-4369.	6.4	34
116	Structural requirements for G(o) activation by receptor-derived peptides: activation and modulation domains of the alpha 2-adrenergic receptor i3c region. Molecular Pharmacology, 1996, 50, 351-8.	2.3	34
117	Conformational Dynamics of a Regulator of G-Protein Signaling Protein Reveals a Mechanism of Allosteric Inhibition by a Small Molecule. ACS Chemical Biology, 2013, 8, 2778-2784.	3.4	33
118	Chemerin-induced arterial contraction is Gi- and calcium-dependent. Vascular Pharmacology, 2017, 88, 30-41.	2.1	33
119	Rapid kinetics of .alpha.2-adrenergic inhibition of adenylate cyclase. Evidence for a distal rate-limiting step. Biochemistry, 1989, 28, 8778-8786.	2.5	32
120	Lateral mobility of tetramethylrhodamine (TMR) labelled G protein α and βγ subunits in NG 108-15 cells. Cellular Signalling, 1994, 6, 663-679.	3.6	32
121	Partial G Protein Activation by Fluorescent Guanine Nucleotide Analogs. Journal of Biological Chemistry, 1996, 271, 4791-4797.	3.4	32
122	Depicting a protein's two faces: GPCR classification by phylogenetic tree-based HMMs. FEBS Letters, 2003, 554, 95-99.	2.8	32
123	Structureâ€based design, synthesis, and pharmacologic evaluation tf peptide RGS4 inhibitors. Chemical Biology and Drug Design, 2004, 63, 141-146.	1.1	32
124	The Loss of RGS Protein-G <i>α</i> _{i2} Interactions Results in Markedly Impaired Mouse Neutrophil Trafficking to Inflammatory Sites. Molecular and Cellular Biology, 2012, 32, 4561-4571.	2.3	32
125	Real-time Analysis of G Protein-coupled Receptor Reconstitution in a Solubilized System. Journal of Biological Chemistry, 2001, 276, 22453-22460.	3.4	31
126	Fluorescence Analysis of Receptorâ^'G Protein Interactions in Cell Membranesâ€. Biochemistry, 2002, 41, 12858-12867.	2.5	31

#	Article	IF	CITATIONS
127	Role of signalling molecules in behaviours mediated by the δ opioid receptor agonist SNC80. British Journal of Pharmacology, 2018, 175, 891-901.	5.4	31
128	Interpreting Hydrogen–Deuterium Exchange Events in Proteins Using Atomistic Simulations: Case Studies on Regulators of G-Protein Signaling Proteins. Journal of Physical Chemistry B, 2018, 122, 9314-9323.	2.6	30
129	Differential modulation of muâ€opioid receptor signaling to adenylyl cyclase by regulators of G protein signaling proteins 4 or 8 and 7 in permeabilised C6 cells is Gα subtype dependent. Journal of Neurochemistry, 2010, 112, 1026-1034.	3.9	29
130	Differential Control of Opioid Antinociception to Thermal Stimuli in a Knock-In Mouse Expressing Regulator of G-Protein Signaling-Insensitive Gα _o Protein. Journal of Neuroscience, 2013, 33, 4369-4377.	3.6	29
131	Induction of the matricellular protein CCN1 through RhoA and MRTF-A contributes to ischemic cardioprotection. Journal of Molecular and Cellular Cardiology, 2014, 75, 152-161.	1.9	29
132	Real-time Analysis of Ternary Complex on Particles. Journal of Biological Chemistry, 2004, 279, 13514-13521.	3.4	28
133	Identification of Pirin as a Molecular Target of the CCG-1423/CCG-203971 Series of Antifibrotic and Antimetastatic Compounds. ACS Pharmacology and Translational Science, 2019, 2, 92-100.	4.9	28
134	Coupling Efficacy and Selectivity of the Human μ-Opioid Receptor Expressed as Receptor-Gα Fusion Proteins in Escherichia coli. Journal of Neurochemistry, 2002, 75, 1190-1199.	3.9	27
135	Mechanism of Action and Structural Requirements of Constrained Peptide Inhibitors of RCS Proteins. Chemical Biology and Drug Design, 2006, 67, 266-274.	3.2	27
136	Regions in the G Protein Î ³ Subunit Important for Interaction with Receptors and Effectors. Molecular Pharmacology, 2006, 69, 877-887.	2.3	27
137	Use of Flow Cytometric Methods to Quantify Proteinâ€Protein Interactions. Current Protocols in Cytometry, 2010, 51, Unit 13.11.1-15.	3.7	27
138	Regulator of G Protein Signaling Protein Suppression of Gα _o Protein-Mediated α _{2A} Adrenergic Receptor Inhibition of Mouse Hippocampal CA3 Epileptiform Activity. Molecular Pharmacology, 2009, 75, 1222-1230.	2.3	26
139	Novel Peptide Ligands of RGS4 from a Focused Oneâ€Bead, Oneâ€Compound Library. Chemical Biology and Drug Design, 2008, 72, 111-119.	3.2	25
140	Roles of GoαTryptophans in GTP Hydrolysis, GDP Release, and Fluorescence Signalsâ€. Biochemistry, 1998, 37, 837-843.	2.5	24
141	Missing Links: Mechanisms of Protean Agonism: Fig. 1 Molecular Pharmacology, 2007, 71, 1200-1202.	2.3	24
142	The hypertension???coronary heart disease dilemma: the catecholamine???blood platelet connection. Journal of Hypertension, 1989, 7, 851-860.	0.5	23
143	Selective inactivation of guanine-nucleotide-binding regulatory protein (G-protein) α and βγ subunits by urea. Biochemical Journal, 2001, 354, 337-344.	3.7	23
144	Cardiotonic Steroids Stabilize Regulator of G Protein Signaling 2 Protein Levels. Molecular Pharmacology, 2012, 82, 500-509.	2.3	23

#	Article	IF	CITATIONS
145	Multisite interactions of receptors and G proteins: enhanced potency of dimeric receptor peptides in modifying G protein function. Molecular Pharmacology, 1994, 45, 1191-7.	2.3	23
146	A conserved hydrophobic surface of the LARG pleckstrin homology domain is critical for RhoA activation in cells. Cellular Signalling, 2009, 21, 1569-1578.	3.6	22
147	Design and synthesis of tag-free photoprobes for the identification of the molecular target for CCG-1423, a novel inhibitor of the Rho/MKL1/SRF signaling pathway. Beilstein Journal of Organic Chemistry, 2013, 9, 966-973.	2.2	22
148	Pharmacologic reduction of sympathetic drive increases platelet alpha-2–receptor number. Clinical Pharmacology and Therapeutics, 1985, 38, 519-524.	4.7	21
149	Parallel inactivation of α2 -adrenergic agonist binding and Ni by alkaline treatment. FEBS Letters, 1985, 192, 321-325.	2.8	21
150	Rapid kinetics of G protein subunit association: A rate-limiting conformational change?. FEBS Letters, 1994, 355, 251-253.	2.8	21
151	Fluorescence Approaches to Study G Protein Mechanisms. Methods in Enzymology, 2002, 344, 403-420.	1.0	21
152	Reversible inhibitors of regulators of G-protein signaling identified in a high-throughput cell-based calcium signaling assay. Cellular Signalling, 2013, 25, 2848-2855.	3.6	21
153	FBXO44-Mediated Degradation of RGS2 Protein Uniquely Depends on a Cullin 4B/DDB1 Complex. PLoS ONE, 2015, 10, e0123581.	2.5	21
154	Small-Molecule Inhibition of Rho/MKL/SRF Transcription in Prostate Cancer Cells: Modulation of Cell Cycle, ER Stress, and Metastasis Gene Networks. Microarrays (Basel, Switzerland), 2016, 5, 13.	1.4	21
155	Differential Protein Dynamics of Regulators of G-Protein Signaling: Role in Specificity of Small-Molecule Inhibitors. Journal of the American Chemical Society, 2018, 140, 3454-3460.	13.7	21
156	Band-pass processing in a GPCR signaling pathway selects for NFAT transcription factor activation. Integrative Biology (United Kingdom), 2015, 7, 1378-1386.	1.3	20
157	RGS-Insensitive G Proteins as In Vivo Probes of RGS Function. Progress in Molecular Biology and Translational Science, 2015, 133, 13-30.	1.7	20
158	Digoxin-Mediated Upregulation of RGS2 Protein Protects against Cardiac Injury. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 311-319.	2.5	20
159	In vitro and in vivo delivery of a sustained release nanocarrier-based formulation of an MRTF/SRF inhibitor in conjunctival fibrosis. Journal of Nanobiotechnology, 2018, 16, 97.	9.1	20
160	Synthesis and characterization of fluorescently labeled bovine brain G protein subunits. Biochemistry, 1993, 32, 2401-2408.	2.5	19
161	The role of regulator of G protein signaling 4 in delta-opioid receptor-mediated behaviors. Psychopharmacology, 2017, 234, 29-39.	3.1	19
162	p-[1251]iodoclonidine is a partial agonist at the alpha 2-adrenergic receptor. Molecular Pharmacology, 1990, 38, 214-21.	2.3	19

#	Article	IF	CITATIONS
163	Large-scale purification of α2-adrenergic receptor-enriched membranes from human platelets. Persistent association of guanine nucleotides with nonpurified membranes. Biochimica Et Biophysica Acta - Biomembranes, 1986, 854, 67-76.	2.6	18
164	Microfabricated Channel Array Electrophoresis for Characterization and Screening of Enzymes Using RGSâ^'G Protein Interactions as a Model System. Analytical Chemistry, 2008, 80, 5225-5231.	6.5	18
165	A covalent peptide inhibitor of RGS4 identified in a focused one-bead, one compound library screen. BMC Pharmacology, 2009, 9, 9.	0.4	18
166	Mind Your Salts: When the Inactive Constituent Isn't: Fig. 1 Molecular Pharmacology, 2010, 78, 558-559.	2.3	18
167	Mouse models of GNAO1-associated movement disorder: Allele- and sex-specific differences in phenotypes. PLoS ONE, 2019, 14, e0211066.	2.5	18
168	ANG II type 1 receptor downregulation does not require receptor endocytosis or G protein coupling. American Journal of Physiology - Cell Physiology, 2001, 281, C801-C809.	4.6	17
169	Diabetic neuropathy: inhibitory G protein dysfunction involves PKC-dependent phosphorylation of Goα. Journal of Neurochemistry, 2003, 86, 1006-1014.	3.9	17
170	Affinity Assays Using Fluorescence Anisotropy with Capillary Electrophoresis Separation. Analytical Chemistry, 2004, 76, 7380-7386.	6.5	17
171	Gα Subunit Coordinates with Ephrin-B to Balance Self-Renewal and Differentiation in Neural Progenitor Cells. Stem Cells, 2010, 28, 1581-1589.	3.2	17
172	Cαi2-mediated protection from ischaemic injury is modulated by endogenous RGS proteins in the mouse heart. Cardiovascular Research, 2011, 91, 45-52.	3.8	17
173	The Rho/MRTF pathway inhibitor CCG-222740 reduces stellate cell activation and modulates immune cell populations in KrasG12D; Pdx1-Cre (KC) mice. Scientific Reports, 2019, 9, 7072.	3.3	17
174	Sensitization of human α1- and α2-adrenergic venous responses by guanadrel sulfate. Clinical Pharmacology and Therapeutics, 1990, 48, 537-543.	4.7	16
175	Isoflurane-Induced Changes in Righting Response and Breathing Are Modulated by RGS Proteins. Anesthesia and Analgesia, 2009, 109, 1500-1505.	2.2	16
176	Hi-Fi transmission of periodic signals amid cell-to-cell variability. Molecular BioSystems, 2011, 7, 2238.	2.9	16
177	Toll-like Receptor-Induced Inflammatory Cytokines are Suppressed by Gain of Function or Overexpression of Gl^{\pm} i2 Protein. Inflammation, 2012, 35, 1611-1617.	3.8	16
178	Cotransfection of second and third intracellular loop fragments inhibit angiotensin AT1a receptor activation of phospholipase C in HEK-293 cells. Journal of Pharmacology and Experimental Therapeutics, 1998, 285, 216-22.	2.5	16
179	Gαi2 signaling: friend or foe in cardiac injury and heart failure?. Naunyn-Schmiedeberg's Archives of Pharmacology, 2012, 385, 443-453.	3.0	15
180	Identification of Protein Kinase C Activation as a Novel Mechanism for RGS2 Protein Upregulation through Phenotypic Screening of Natural Product Extracts. Molecular Pharmacology, 2014, 86, 406-416.	2.3	15

#	Article	IF	CITATIONS
181	Regulator of G Protein Signaling 6 Protects the Heart from Ischemic Injury. Journal of Pharmacology and Experimental Therapeutics, 2017, 360, 409-416.	2.5	15
182	How does a key fit a flexible lock? Structure and dynamics in receptor function. BioEssays, 1989, 11, 136-141.	2.5	14
183	Selective inactivation of guanine-nucleotide-binding regulatory protein (G-protein) α and βγ subunits by urea. Biochemical Journal, 2001, 354, 337.	3.7	14
184	RGS-Insensitive Gα Subunits: Probes of Gα Subtype-Selective Signaling and Physiological Functions of RGS Proteins. Methods in Molecular Biology, 2011, 756, 75-98.	0.9	14
185	The DRY motif and the four corners of the cubic ternary complex model. Cellular Signalling, 2017, 35, 16-23.	3.6	14
186	Mice with GNAO1 R209H Movement Disorder Variant Display Hyperlocomotion Alleviated by Risperidone. Journal of Pharmacology and Experimental Therapeutics, 2020, 373, jpet.119.262733.	2.5	14
187	Temperature effects on α2-adrenergic receptor-Gi interactions. Biochemical Pharmacology, 1988, 37, 2815-2821.	4.4	13
188	Specificity of Receptor–G Protein Coupling: Protein Structure and Cellular Determinants. Seminars in Neuroscience, 1998, 9, 189-197.	2.2	13
189	Regulation of Protease-activated Receptor 1 Signaling by the Adaptor Protein Complex 2 and R4 Subfamily of Regulator of G Protein Signaling Proteins. Journal of Biological Chemistry, 2014, 289, 1580-1591.	3.4	13
190	Interplay of cysteine exposure and global protein dynamics in smallâ€molecule recognition by a regulator of Gâ€protein signaling protein. Proteins: Structure, Function and Bioinformatics, 2019, 87, 146-156.	2.6	13
191	A threshold level of coupled G-proteins is required to transduce neutrophil responses. Journal of Immunology, 1992, 149, 2172-8.	0.8	13
192	Subsecond modulation of formyl peptide-linked guanine nucleotide-binding proteins by guanosine 5'-O-(3-thio)triphosphate in permeabilized neutrophils. Molecular Pharmacology, 1993, 43, 734-40.	2.3	13
193	Resonance energy transfer between guanine nucleotide binding protein subunits and membrane lipids. Biochemistry, 1993, 32, 2409-2414.	2.5	12
194	Human Missense Mutations in Regulator of G Protein Signaling 2 Affect the Protein Function Through Multiple Mechanisms. Molecular Pharmacology, 2017, 92, 451-458.	2.3	12
195	Ribozyme- and siRNA-Mediated Suppression of RGS-Containing RhoGEF Proteins. Methods in Enzymology, 2004, 389, 244-265.	1.0	11
196	Microfluidic interrogation and mathematical modeling of multi-regime calcium signaling dynamics. Integrative Biology (United Kingdom), 2013, 5, 932.	1.3	11
197	A Two-Pulse Cellular Stimulation Test Elucidates Variability and Mechanisms in Signaling Pathways. Biophysical Journal, 2019, 116, 962-973.	0.5	11
198	A central role for R7bp in the regulation of itch sensation. Pain, 2017, 158, 931-944.	4.2	11

#	Article	IF	CITATIONS
199	Structure-Based Design, Synthesis, and Activity of Peptide Inhibitors of RGS4 GAP Activity. Methods in Enzymology, 2004, 389, 266-277.	1.0	10
200	Coupling an receptor peptide to G-protein: A new photolabeling agent. Peptides, 1994, 15, 829-834.	2.4	9
201	Lack of association of G-protein <i>β</i> 2- and <i>γ</i> 2-subunit N-terminal fragments provides evidence against the coiled-coil model of subunit- <i>βγ</i> assembly. Biochemical Journal, 1995, 309, 377-380.	3.7	9
202	Conditional disruption of interactions between Gαi2 and regulator of G protein signaling (RGS) proteins protects the heart from ischemic injury. BMC Pharmacology & Toxicology, 2014, 15, 29.	2.4	9
203	And the Winner Is $\hat{a} \in $ RGS4!. Circulation Research, 2008, 103, 444-446.	4.5	8
204	Glossary of terms used in biomolecular screening (IUPAC Recommendations 2011). Pure and Applied Chemistry, 2011, 83, 1129-1158.	1.9	8
205	Regulation of G protein signaling by the 70kDa heat shock protein. Cellular Signalling, 2013, 25, 389-396.	3.6	8
206	An Interhelical Salt Bridge Controls Flexibility and Inhibitor Potency for Regulators of G-protein Signaling Proteins 4, 8, and 19. Molecular Pharmacology, 2019, 96, 683-691.	2.3	8
207	Class A Orphans (version 2019.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	8
208	In vitro protein kinase activity measurement by flow cytometry. Analytical Biochemistry, 2008, 383, 180-185.	2.4	7
209	RGS Proteins and Cαi2 Modulate Sleep, Wakefulness, and Disruption of Sleep/ Wake States after Isoflurane and Sevoflurane Anesthesia. Sleep, 2016, 39, 393-404.	1.1	7
210	Transforming Growth Factor <i>β</i> 1 Increases Expression of Contractile Genes in Human Pulmonary Arterial Smooth Muscle Cells by Potentiating Sphingosine-1-Phosphate Signaling. Molecular Pharmacology, 2021, 100, 83-90.	2.3	7
211	Class A Orphans (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	7
212	Optimisation of Intestinal Fibrosis and Survival in the MouseS. TyphimuriumModel for Anti-fibrotic Drug Discovery and Preclinical Applications. Journal of Crohn's and Colitis, 2016, 11, jjw210.	1.3	6
213	Loss-of-Function Mutations in Human Regulator of G Protein Signaling RGS2 Differentially Regulate Pharmacological Reactivity of Resistance Vasculature. Molecular Pharmacology, 2019, 96, 826-834.	2.3	6
214	Two highly related odorant receptors specifically detect α-bile acid pheromones in sea lamprey (Petromyzon marinus). Journal of Biological Chemistry, 2020, 295, 12153-12166.	3.4	6
215	Inhibition of the Myocardin-Related Transcription Factor Pathway Increases Efficacy of Trametinib in NRAS-Mutant Melanoma Cell Lines. Cancers, 2021, 13, 2012.	3.7	6
216	Convergent olfactory trace amine-associated receptors detect biogenic polyamines with distinct motifs via a conserved binding site. Journal of Biological Chemistry, 2021, 297, 101268.	3.4	6

#	Article	IF	CITATIONS
217	Subcellular distribution of α2-adrenergic receptors, pertussis-toxin substrate and adenylate cyclase in human platelets. Biochemical Journal, 1990, 265, 755-762.	3.7	5
218	Fluorescence-Based Adenylyl Cyclase Assay Adaptable to High Throughput Screening. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 289-298.	1.1	5
219	Capillary Electrophoresis Assay for G Protein-Coupled Receptor-Mediated GTPase Activity. Analytical Chemistry, 2007, 79, 1158-1163.	6.5	5
220	NMR Methods for Detection of Small Molecule Binding to RGS4. Methods in Enzymology, 2013, 522, 133-152.	1.0	5
221	Ibrutinib Blocks YAP1 Activation and Reverses BRAF Inhibitor Resistance in Melanoma Cells. Molecular Pharmacology, 2022, 101, 1-12.	2.3	5
222	Mice with monoallelic <i>GNAO1</i> loss exhibit reduced inhibitory synaptic input to cerebellar Purkinje cells. Journal of Neurophysiology, 2022, 127, 607-622.	1.8	5
223	Modern NMR spectroscopy of proteins and peptides in solution and its relevance to drug design. Journal of Computer - Aided Molecular Design, 1993, 1, 391-417.	1.0	4
224	Expression of novel splice variants of the G protein subunit, G o α, is tissue-specific and age-dependent in the rat. Gene, 2002, 296, 249-255.	2.2	4
225	GNAI2 and regulators of G protein signaling as a potential Noonan syndrome mechanism. Medical Hypotheses, 2009, 73, 56-59.	1.5	4
226	Identifying chemopreventive agents for obesity-associated cancers using an efficient, 3D high-throughput transformation assay. Scientific Reports, 2019, 9, 10278.	3.3	4
227	Mice with an RGS-insensitive Gαi2 protein show growth hormone axis dysfunction. Molecular and Cellular Endocrinology, 2021, 521, 111098.	3.2	3
228	Class A Orphans in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	3
229	Role of hippocampal 5-HT1A receptors in the antidepressant-like phenotype of mice expressing RGS-insensitive GI±i2 protein. Neuropharmacology, 2018, 141, 296-304.	4.1	2
230	BRAF Inhibitor Resistance Confers Increased Sensitivity to Mitotic Inhibitors. Frontiers in Oncology, 2022, 12, 766794.	2.8	2
231	Targeting regulators of G protein signaling (RGS proteins) to enhance agonist specificity. , 2006, , 93-103.		1
232	Characterization and mechanistic investigation of CCGâ€4986, a small molecule RGS4 inhibitor. FASEB Journal, 2007, 21, A431.	0.5	1
233	Development of a Time Resolved FRET Highâ€Throughput Assay to Identify Inhibitors of the RGS4/Gαo Interaction. FASEB Journal, 2007, 21, A431.	0.5	1
234	G protein-coupled estrogen receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	1

#	Article	IF	CITATIONS
235	USING EVOLUTIONARY METHODS TO STUDY G-PROTEIN COUPLED RECEPTORS. , 2001, , .		1
236	Peptide ligands of Regulators of Gâ€Protein Signaling 4 (RGS4) identified by screening of a focused oneâ€bead, oneâ€compound peptide library. FASEB Journal, 2007, 21, A1002.	0.5	1
237	RCS4 negatively modulates Nociceptin/Orphanin FQ opioid receptor signaling: implication for Lâ€Đopaâ€induced dyskinesia British Journal of Pharmacology, 2021, , .	5.4	1
238	A Glowing Opportunity to Target YAP in Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, 1-2.	2.9	1
239	Cover Image, Volume 87, Issue 2. Proteins: Structure, Function and Bioinformatics, 2019, 87, C1.	2.6	0
240	G protein-coupled estrogen receptor in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
241	Biphasic regulation of muâ€opioid signaling to adenylyl cyclase by GTPase accelerating protein (GAP) activity of RGS7. FASEB Journal, 2007, 21, A430.	0.5	0
242	α2A adrenergic receptor mediated antiepileptic effects via Gαo proteins. FASEB Journal, 2008, 22, 729.3.	0.5	0
243	Genetic deletion of Regulators of G protein Signaling (RGS) protein activity enhances buprenorphine antinociception while limiting withdrawal behaviors associated with chronic administration. FASEB Journal, 2008, 22, 907.7.	0.5	0
244	Mice lacking RGS protein activity at Gαi2 exhibit a 5HT1A receptorâ€mediated antidepressantâ€like phenotype. FASEB Journal, 2008, 22, 907.8.	0.5	0
245	High Throughtput Screening Using A Polyplexed Flow Cytometry Protein Interaction Assay (FCPIA) for Small Molecule Inhibitors of Regulator of G protein Signaling (RGS) Proteins. FASEB Journal, 2008, 22, 907.2.	0.5	0
246	Functional Selectivity at Adrenergic Receptors. , 2009, , 107-124.		0
247	RGS7 Protein Suppression of Gao Proteinâ€Mediated α2Aâ€Adrenergic Receptor Inhibition of Mouse Hippocampal CA3 Epileptiform Activity. FASEB Journal, 2010, 24, 587.3.	0.5	0
248	Differential effects of Go and Gi2 on seizure threshold. FASEB Journal, 2011, 25, 1010.2.	0.5	0
249	Targeting degradation pathways of RGS2 using highâ€ŧhroughput siRNA screening. FASEB Journal, 2012, 26, 838.9.	0.5	0
250	S1P induces CCN1 expression through RhoA/MRTFâ€a activation and protects cardiomyocytes against cell death. FASEB Journal, 2012, 26, 1060.4.	0.5	0
251	Generation of Gα i2 G184S conditional mutant mice to study regulator of G protein signaling (RGS) proteins. FASEB Journal, 2012, 26, 1114.10.	0.5	0
252	RGS 2 and RGS 4 Differentially Modulate G Protein Coupled Receptor Signaling in the Mouse Aorta. FASEB Journal, 2013, 27, 1095.3.	0.5	0

#	Article	IF	CITATIONS
253	Dynamic control of Allosteric Inhibitor Specificity for RGS4. FASEB Journal, 2013, 27, 1095.11.	0.5	0
254	Increased Go activity in C57Bl/6J mice enhances sensitivity to a model of epilepsy. FASEB Journal, 2013, 27, 660.1.	0.5	0
255	Regulator of G Protein Signaling Protein 6 (RGS6) Protects the Heart from Ischemic Injury. FASEB Journal, 2015, 29, 1026.8.	0.5	0
256	RGS4 Differentially Regulates Antidepressant and Locomotor Behaviors In Vivo. FASEB Journal, 2015, 29, 618.11.	0.5	0
257	RGS2 Protein Degradation is Mediated by a Novel Cullin 4B/Fâ€box 44 E3 Ligase Complex. FASEB Journal, 2015, 29, 618.15.	0.5	0
258	Investigating Regulator of Gâ€protein Signaling (RGS) Protein Dynamics by Hydrogen/Deuterium Exchange. FASEB Journal, 2017, 31, 665.8.	0.5	0
259	Novel antifibrotic target related to RhoA-induced MRTF activation in fibrotic diseases. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY84-4.	0.0	0
260	Loss of function RGS2 mutations augment vascular contractility ex vivo. FASEB Journal, 2018, 32, 699.2.	0.5	0
261	Role of Protein Dynamics in Selectivity of Thiadiazolidinone Inhibition of RGS Proteins. FASEB Journal, 2018, 32, 557.9.	0.5	0
262	A Salt Bridge between α4 and α5 Helices Drives Differences in Flexibility and Potency of Inhibition among Regulator of Gâ€protein Signaling (RGS) Proteins. FASEB Journal, 2019, 33, 784.16.	0.5	0
263	Mice with Gnao1 G203R Gainâ€ofâ€Function (GOF) Mutation Phenocopy Combined Movement Disorder and Seizures of Patients. FASEB Journal, 2019, 33, 667.4.	0.5	0
264	Class A Orphans (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0
265	Mice With Monoallelic <i>GNAO1</i> Loss Exhibit Reduced Inhibitory Synaptic Input to Cerebellar Purkinje Cells. FASEB Journal, 2022, 36, .	0.5	0