Laura Baños-Picón

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7420427/publications.pdf

Version: 2024-02-01

22 papers

521 citations

8 h-index 18 g-index

22 all docs 22 docs citations 22 times ranked 847 citing authors

#	Article	IF	Citations
1	The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.	6.4	364
2	Value of ecological infrastructure diversity in the maintenance of spider assemblages: A case study of Mediterranean vineyard agroecosystems. Agriculture, Ecosystems and Environment, 2018, 265, 244-253.	5.3	30
3	Superparasitism in Laboratory rearing of <i>Spalangia cameroni</i> (Hymenoptera: Pteromalidae), a parasitoid of medfly (Diptera: Tephritidae). Bulletin of Entomological Research, 2012, 102, 51-61.	1.0	20
4	The complementarity between ecological infrastructure types benefits natural enemies and pollinators in a Mediterranean vineyard agroecosystem. Annals of Applied Biology, 2019, 175, 193-201.	2.5	18
5	Comparison of two Mediterranean crop systems: Polycrop favours trap-nesting solitary bees over monocrop. Basic and Applied Ecology, 2013, 14, 255-262.	2.7	12
6	Natural enemies and pollinators in traditional cherry orchards: Functionally important taxa respond differently to farming system. Agriculture, Ecosystems and Environment, 2020, 295, 106920.	5.3	12
7	Both landscape and local scale factors matter for the parental investment strategies of the pollinator Osmia caerulescens. Journal of Apicultural Research, 2017, 56, 1-12.	1.5	10
8	Are solitary progressive-provisioning wasps optimal foragers? A study with the digger wasp Bembix merceti (Hymenoptera: Crabronidae). Behaviour, 2011, 148, 191-214.	0.8	9
9	Farming system shapes traits and composition of spider assemblages in Mediterranean cherry orchards. Peerl, 2020, 8, e8856.	2.0	8
10	Ecological infrastructures across Mediterranean agroecosystems: Towards an effective tool for evaluating their ecological quality. Agricultural Systems, 2019, 173, 355-363.	6.1	7
11	Diversity of insect pollinators in the Iberian Peninsula. Ecosistemas, 2018, 27, 9-22.	0.4	7
12	Spatial Nestâ€Settlement Decisions in Digger Wasps: Conspecifics Matter more than Heterospecifics and Previous Experience. Ethology, 2014, 120, 340-353.	1.1	6
13	Low Host Specialization in the Cuckoo Wasp, Parnopes grandior, Weakens Chemical Mimicry but Does Not Lead to Local Adaption. Insects, 2020, 11, 136.	2.2	5
14	Behavioural and ecological data on Dryudella stigma (Panzer, 1809) (Hymenoptera, Astatidae) with the first description of the mature larva. Journal of Hymenoptera Research, 0, 82, 305-316.	0.8	3
15	Complex-to-Predict Generational Shift between Nested and Clustered Organization of Individual Prey Networks in Digger Wasps. PLoS ONE, 2014, 9, e102325.	2.5	3
16	Effect of Organic Farming and Agricultural Abandonment on Beneficial Arthropod Communities Associated with Olive Groves in Western Spain: Implications for Bactrocera oleae Management. Insects, 2022, 13, 48.	2.2	3
17	Effects of hillside aspect, landscape features, and kleptoparasitism on the reproductive success of the solitary bee <scp><i>Osmia caerulescens</i></scp> . Ecological Entomology, 2021, 46, 541-551.	2.2	2
18	Falling Victim to Wasps in the Air: A Fate Driven by Prey Flight Morphology?. PLoS ONE, 2016, 11, e0152256.	2.5	1

#	Article	IF	CITATIONS
19	Disentangling the Benefits of Organic Farming for Beetle Communities (Insecta: Coleoptera) in Traditional Fruit Orchards. Agriculture (Switzerland), 2022, 12, 243.	3.1	1
20	Description of the Mature Larvae of Two Species of <i>Liris </i> with Notes on the Immature Stages of <i>L. Niger </i> (Hymenoptera: Crabronidae). Florida Entomologist, 2010, 93, 510-515.	0.5	0
21	The role of artificial ponds in maintaining dragonfly populations in an intensified farmland landscape. A case of study in Zamora, Spain. Journal of Natural History, 2020, 54, 2439-2454.	0.5	O
22	Pollen use by the solitary bee <i>Osmia caerulescens</i> in cherry orchard agroecosystems in Spain. Journal of Apicultural Research, 0, , 1-10.	1.5	0