
Matthieu Sollogoub

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7420335/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Triisobutylaluminium and Diisobutylaluminium Hydride as Molecular Scalpels: The Regioselective Stripping of Perbenzylated Sugars and Cyclodextrins. Chemistry - A European Journal, 2004, 10, 2960-2971.	1.7	165
2	High throughput measurement of duplex, triplex and quadruplex melting curves using molecular beacons and a LightCycler. Nucleic Acids Research, 2002, 30, 39e-39.	6.5	148
3	NHC apped Cyclodextrins (ICyDs): Insulated Metal Complexes, Commutable Multicoordination Sphere, and Cavityâ€Đependent Catalysis. Angewandte Chemie - International Edition, 2013, 52, 7213-7218.	7.2	128
4	Fluoro-C-glycosides and fluoro-carbasugars, hydrolytically stable and synthetically challenging glycomimetics. Chemical Society Reviews, 2013, 42, 4270-4283.	18.7	93
5	The first synthesis of substituted azepanes mimicking monosaccharides: a new class of potent glycosidase inhibitors. Organic and Biomolecular Chemistry, 2004, 2, 1492-1499.	1.5	90
6	Photosensitive Surfactants with Various Hydrophobic Tail Lengths for the Photocontrol of Genomic DNA Conformation with Improved Efficiency. Chemistry - A European Journal, 2010, 16, 11890-11896.	1.7	88
7	Fluorinated carbohydrates as chemical probes for molecular recognition studies. Current status and perspectives. Chemical Society Reviews, 2020, 49, 3863-3888.	18.7	77
8	Cyclodextrin Cavityâ€Induced Mechanistic Switch in Copperâ€Catalyzed Hydroboration. Angewandte Chemie - International Edition, 2017, 56, 10821-10825.	7.2	69
9	Multiple Homo- and Hetero-functionalizations of α-Cyclodextrin through Oriented Deprotections. Journal of Organic Chemistry, 2008, 73, 2819-2828.	1.7	67
10	Analysis of the Reaction Coordinate of α- <scp>l</scp> -Fucosidases: A Combined Structural and Quantum Mechanical Approach. Journal of the American Chemical Society, 2010, 132, 1804-1806.	6.6	63
11	From Glucose to Cyclooctanic Carbaglucose: A New Class of Carbohydrate Mimetics. Angewandte Chemie - International Edition, 2000, 39, 2466-2467.	7.2	62
12	Molecular Basis for Inhibition of GH84 Glycoside Hydrolases by Substituted Azepanes: Conformational Flexibility Enables Probing of Substrate Distortion. Journal of the American Chemical Society, 2009, 131, 5390-5392.	6.6	62
13	Artificial Chiral Metallo-pockets Including a Single Metal Serving as Structural Probe and Catalytic Center. CheM, 2017, 3, 174-191.	5.8	62
14	Regiospecific Tandem Azideâ€Reduction/Deprotection To Afford Versatile Amino Alcoholâ€Functionalized α― and βâ€Cyclodextrins. Angewandte Chemie - International Edition, 2008, 47, 7060-7063.	7.2	57
15	Cavitand supported tetraphosphine: cyclodextrin offers a useful platform for Suzuki-Miyaura cross-coupling. Chemical Communications, 2011, 47, 9206.	2.2	57
16	Carbocyclic Ring Closure of Unsaturated S-, Se-, and C-Aryl Glycosides. Angewandte Chemie - International Edition, 2000, 39, 362-364.	7.2	55
17	Chemical Clockwise Tridifferentiation of α―and βâ€Cyclodextrins: Basculeâ€Bridge or Deoxy‧ugars Strategies. Chemistry - A European Journal, 2007, 13, 9757-9774.	1.7	54
18	Cyclodextrinâ€Induced Autoâ€Healing of Hybrid Polyoxometalates. Angewandte Chemie - International Edition, 2012, 51, 487-490.	7.2	54

#	Article	IF	CITATIONS
19	An N-heterocyclic carbene ligand based on a β-cyclodextrin–imidazolium salt: synthesis, characterization of organometallic complexes and Suzuki coupling. New Journal of Chemistry, 2011, 35, 2061.	1.4	53
20	Beta cyclodextrins bind, stabilize, and remove lipofuscin bisretinoids from retinal pigment epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1402-8.	3.3	52
21	Photocontrol of Single hain DNA Conformation in Cellâ€Mimicking Microcompartments. ChemBioChem, 2008, 9, 1201-1206.	1.3	51
22	Site-selective hexa-hetero-functionalization of α-cyclodextrin an archetypical C6-symmetric concave cycle. Nature Communications, 2014, 5, 5354.	5.8	51
23	Confinement of Metal–Nâ€Heterocyclic Carbene Complexes to Control Reactivity in Catalytic Reactions. Chemistry - A European Journal, 2018, 24, 12464-12473.	1.7	50
24	Synthesis ofgem-Difluorocarba-D-glucose: A Step Further in Sugar Mimesis. Angewandte Chemie - International Edition, 2004, 43, 6680-6683.	7.2	48
25	Stable DNA Triple Helix Formation Using Oligonucleotides Containing 2â€~-Aminoethoxy,5-propargylamino-Uâ€. Biochemistry, 2002, 41, 7224-7231.	1.2	47
26	Diisobutylaluminium hydride (DIBAL-H) is promoting a selective clockwise debenzylation of perbenzylated 6A,6D-dideoxy-α-cyclodextrin. Tetrahedron Letters, 2005, 46, 7757-7760.	0.7	47
27	Titanium (IV) promoted rearrangement of 6-deoxy-hex-5-enopyranosides into cyclohexanones. Tetrahedron Letters, 1998, 39, 3471-3472.	0.7	46
28	Bridging βâ€Cyclodextrin Prevents Selfâ€Inclusion, Promotes Supramolecular Polymerization, and Promotes Cooperative Interaction with Nucleic Acids. Angewandte Chemie - International Edition, 2018, 57, 7753-7758.	7.2	46
29	Ganglioside GM3 and Its Role in Cancer. Current Medicinal Chemistry, 2019, 26, 2933-2947.	1.2	46
30	Phenylenediamine catalysis of "click glycosylations―in water: practical and direct access to unprotected neoglycoconjugates. Organic and Biomolecular Chemistry, 2008, 6, 1898.	1.5	45
31	Design and synthesis of acetamido tri- and tetra-hydroxyazepanes: Potent and selective β-N-acetylhexosaminidase inhibitors. Bioorganic and Medicinal Chemistry, 2009, 17, 5598-5604.	1.4	44
32	Capturing the Monomeric (L)CuH in NHCâ€Capped Cyclodextrin: Cavityâ€Controlled Chemoselective Hydrosilylation of α,βâ€Unsaturated Ketones. Angewandte Chemie - International Edition, 2020, 59, 7591-7597.	7.2	44
33	Capâ€Assisted Synthesis of Heteroâ€Trifunctional Cyclodextrins, from Flamingo Cap to Bascule Bridge. European Journal of Organic Chemistry, 2009, 2009, 1295-1303.	1.2	43
34	Synthesis of carba-β-d- and l-idopyranosides by rearrangement of unsaturated sugars. Tetrahedron: Asymmetry, 2000, 11, 283-294.	1.8	42
35	Can Heteroâ€Polysubstituted Cyclodextrins be Considered as Inherently Chiral Concave Molecules?. Angewandte Chemie - International Edition, 2010, 49, 2314-2318.	7.2	42
36	Selection of the biological activity of DNJ neoglycoconjugates through click length variation of the side chain. Organic and Biomolecular Chemistry, 2011, 9, 5373.	1.5	42

#	Article	IF	CITATIONS
37	Diisobutylaluminium Hydride (DIBALâ€H) Promoted Secondary Rim Regioselective Demethylations of Permethylated βâ€Cyclodextrin: A Mechanistic Proposal. European Journal of Organic Chemistry, 2010, 2010, 1510-1516.	1.2	41
38	Diametrically Opposed Carbenes on an αâ€Cyclodextrin: Synthesis, Characterization of Organometallic Complexes and Suzuki–Miyaura Coupling in Ethanol and in Water. European Journal of Organic Chemistry, 2013, 2013, 3691-3699.	1.2	40
39	Novel imino sugar α-glucosidase inhibitors as antiviral compounds. Bioorganic and Medicinal Chemistry, 2013, 21, 4831-4838.	1.4	39
40	Cyclodextrin Polyrotaxanes as a Highly Modular Platform for the Development of Imaging Agents. Chemistry - A European Journal, 2014, 20, 10915-10920.	1.7	39
41	β-Cyclodextrin–NHC–Gold(I) Complex (β-ICyD)AuCl: A Chiral Nanoreactor for Enantioselective and Substrate-Selective Alkoxycyclization Reactions. ACS Catalysis, 2020, 10, 5964-5972.	5.5	39
42	Mechanostereoselective One-Pot Synthesis of Functionalized Head-to-Head Cyclodextrin [3]Rotaxanes and Their Application as Magnetic Resonance Imaging Contrast Agents. Organic Letters, 2017, 19, 1136-1139.	2.4	37
43	Site-Selective Heterofunctionalization of Cyclodextrins: Discovery, Development, and Use in Catalysis. Synlett, 2013, 24, 2629-2640.	1.0	36
44	<i>gem</i> â€Difluorocarbadisaccharides: Restoring the <i>exo</i> â€Anomeric Effect. Angewandte Chemie - International Edition, 2014, 53, 9597-9602.	7.2	36
45	First synthesis of 1-deazacytidine, the C-nucleoside analogue of cytidine. Tetrahedron Letters, 2002, 43, 3121-3123.	0.7	35
46	Sequential ring closing/opening metathesis for the highly selective synthesis of a triply bifunctionalized α-cyclodextrin. Chemical Communications, 2006, , 1112-1114.	2.2	35
47	A Hydrophilic Cyclodextrin Duplex Forming Supramolecular Assemblies by Physical Cross‣inking of a Biopolymer. Chemistry - A European Journal, 2007, 13, 8847-8857.	1.7	35
48	Direct Synthesis of Pseudo-Disaccharides by Rearrangement of Unsaturated Disaccharides. European Journal of Organic Chemistry, 1999, 1999, 2103-2117.	1.2	34
49	Liposomes for PET and MR Imaging and for Dual Targeting (Magnetic Field/Glucose Moiety): Synthesis, Properties, and <i>in Vivo</i> Studies. Molecular Pharmaceutics, 2017, 14, 406-414.	2.3	34
50	Cyclodextrin Cavityâ€Induced Mechanistic Switch in Copper atalyzed Hydroboration. Angewandte Chemie, 2017, 129, 10961-10965.	1.6	34
51	An Epoxide Intermediate in Glycosidase Catalysis. ACS Central Science, 2020, 6, 760-770.	5.3	34
52	Samarium(II) iodide promoted ring contraction of carbohydrate derivatives: an expeditious synthesis of functionalised cyclopentanes. Journal of the Chemical Society Chemical Communications, 1995, .	2.0	33
53	Cycloheptanic sugar mimetics, bridging the gap in the homologous series of carbocyclic analogues. Tetrahedron, 2002, 58, 10189-10196.	1.0	33
54	Expeditious selective synthesis of primary rim tri-differentiated α-cyclodextrin. Tetrahedron Letters, 2006, 47, 4137-4139.	0.7	33

#	Article	IF	CITATIONS
55	Permethylated NHCâ€Capped α―and βâ€Cyclodextrins (ICyD ^{Me}) Regioselective and Enantioselective Goldâ€Catalysis in Pure Water. Chemistry - A European Journal, 2020, 26, 15901-15909.	1.7	32
56	Synthesis of 1,2- <i>cis</i> -Homoiminosugars Derived from GlcNAc and GalNAc Exploiting a β-Amino Alcohol Skeletal Rearrangement. Organic Letters, 2014, 16, 5512-5515.	2.4	29
57	Biological applications of hydrophilic C60 derivatives (hC60s)â^' a structural perspective. European Journal of Medicinal Chemistry, 2016, 115, 438-452.	2.6	29
58	Conjugation of cyclodextrin with fullerene as a new class of HCV entry inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 5616-5622.	1.4	27
59	Hexaphyrin–Cyclodextrin Hybrids: A Nest for Switchable Aromaticity, Asymmetric Confinement, and Isomorphic Fluxionality. Angewandte Chemie - International Edition, 2016, 55, 297-301.	7.2	26
60	Kinetic Analysis of Enterococcus faecium <scp>l</scp> , <scp>d</scp> -Transpeptidase Inactivation by Carbapenems. Antimicrobial Agents and Chemotherapy, 2012, 56, 3409-3412.	1.4	25
61	An "Against the Rules―Double Bank Shot with Diisobutylaluminum Hydride To Allow Triple Functionalization of α yclodextrin. Angewandte Chemie - International Edition, 2013, 52, 639-644.	7.2	25
62	gem-Difluoro-carbasugars, the cases of mannopyranose and galactopyranose. Carbohydrate Research, 2007, 342, 1689-1703.	1.1	24
63	Research Progress of Natural Product Gentiopicroside - a Secoiridoid Compound. Mini-Reviews in Medicinal Chemistry, 2016, 17, 62-77.	1.1	24
64	Pd-catalysed Capping Removal on a Tri-differentiated α-Cyclodextrin. Chemistry Letters, 2006, 35, 534-535.	0.7	23
65	The conformation of the C-glycosyl analogue of N-acetyl-lactosamine in the free state and bound to a toxic plant agglutinin and human adhesion/growth-regulatory galectin-1. Carbohydrate Research, 2007, 342, 1918-1928.	1.1	23
66	Efficient Access to Peptidylâ€RNA Conjugates for Picomolar Inhibition of Nonâ€ribosomal FemX _{Wv} Aminoacyl Transferase. Chemistry - A European Journal, 2013, 19, 1357-1363.	1.7	22
67	Cyclodextrin-adamantane conjugates, self-inclusion and aggregation versus supramolecular polymer formation. Organic Chemistry Frontiers, 2014, 1, 703-706.	2.3	22
68	Design, synthesis and biological evaluation of gentiopicroside derivatives as potential antiviral inhibitors. European Journal of Medicinal Chemistry, 2017, 130, 308-319.	2.6	22
69	The First Chemical Synthesis of a Cyclodextrin Heteroduplex. Chemistry and Biodiversity, 2004, 1, 129-137.	1.0	21
70	Synthesis and Electrochemical Study of an Original Copper(II) apped Salen–Cyclodextrin Complex. European Journal of Inorganic Chemistry, 2010, 2010, 4720-4727.	1.0	21
71	Synthesis of 1,2- <i>trans</i> -2-Acetamido-2-deoxyhomoiminosugars. Organic Letters, 2014, 16, 5516-5519.	2.4	21
72	Orchestrating Communications in a Three-Type Chirality Totem: Remote Control of the Chiroptical Response of a Möbius Aromatic System. Journal of the American Chemical Society, 2019, 141, 11583-11593.	6.6	21

#	Article	IF	CITATIONS
73	Programmed Synthesis of Heptaâ€Differentiated βâ€Cyclodextrin: 1 out of 117655 Arrangements. Angewandte Chemie - International Edition, 2021, 60, 12090-12096.	7.2	21
74	Cyclodextrin tetraplexes: first syntheses and potential as cross-linking agent. Chemical Communications, 2010, 46, 2238.	2.2	20
75	Design, synthesis and biological evaluation of water-soluble per-O-methylated cyclodextrin-C60 conjugates as anti-influenza virus agents. European Journal of Medicinal Chemistry, 2018, 146, 194-205.	2.6	20
76	Carboboration of Alkynes with Cyclodextrinâ€Encapsulated <i>N</i> â€Heterocyclic Carbene Copper Complexes. European Journal of Organic Chemistry, 2019, 2019, 2682-2687.	1.2	20
77	Amphiphilic bipolar duplex α-cyclodextrin forming vesicles. Tetrahedron, 2007, 63, 2973-2977.	1.0	19
78	μ-Waves avoid large excesses of diisobutylaluminium-hydride (DIBAL-H) in the debenzylation of perbenzylated α-cyclodextrin. Tetrahedron Letters, 2010, 51, 1254-1256.	0.7	19
79	Towards a stable noeuromycin analog with a d-manno configuration: Synthesis and glycosidase inhibition of d-manno-like tri- and tetrahydroxylated azepanes. Bioorganic and Medicinal Chemistry, 2012, 20, 641-649.	1.4	19
80	Solidâ€State Hierarchical Cyclodextrinâ€Based Supramolecular Polymer Constructed by Primary, Secondary, and Tertiary Azido Interactions. Angewandte Chemie - International Edition, 2014, 53, 7238-7242.	7.2	19
81	Trimethylaluminium promoted rearrangements of unsaturated sugars into cyclohexanes. Tetrahedron: Asymmetry, 2004, 15, 699-703.	1.8	18
82	Conformational behaviour of glycomimetics: NMR and molecular modelling studies of the C-glycoside analogue of the disaccharide methyl β-d-galactopyranosyl-(1→3)-β-d-glucopyranoside. Carbohydrate Research, 2007, 342, 1910-1917.	1.1	18
83	Chemical Sensors Based on New Polyamides Biobased on (Z) Octadecâ€9â€Enedioic Acid and βâ€Cyclodextrin. Macromolecular Chemistry and Physics, 2016, 217, 1620-1628.	1.1	18
84	Mapping Câ^'Hâ‹â‹â (M Interactions in Confined Spaces: (αâ€ICyD ^{Me})Au, Ag, Cu Complexes Re "Contraâ€electrostatic H Bonds―Masquerading as Anagostic Interactions**. Chemistry - A European Journal, 2021, 27, 8127-8142.	eveal 1.7	18
85	Triisobutylaluminium promoted reductive rearrangement of substituted vinyl ethers to homologous alcohols. Chemical Communications, 2000, , 1507-1508.	2.2	17
86	Contribution of Shape and Charge to the Inhibition of a Family GH99 <i>endo</i> -α-1,2-Mannanase. Journal of the American Chemical Society, 2017, 139, 1089-1097.	6.6	17
87	Conformational Plasticity in Glycomimetics: Fluorocarbamethylâ€∢scp>Lâ€idopyranosides Mimic the Intrinsic Dynamic Behaviour of Natural Idose Rings. Chemistry - A European Journal, 2015, 21, 10513-10521.	1.7	16
88	Secondaryâ€Rim γâ€Cyclodextrin Functionalization to Conjugate with C ₆₀ : Improved Efficacy as a Photosensitizer. Chemistry - A European Journal, 2017, 23, 9462-9466.	1.7	16
89	Synthesis of a novel bis-amino-modified thymidine monomer for use in DNA triplex stabilisation. Chemical Communications, 2000, , 2315-2316.	2.2	14
90	Alkylalanes and methyl furanosides: regioselective O-debenzylation or acetal cleavage. Carbohydrate Research, 2006, 341, 2135-2144.	1.1	14

#	Article	IF	CITATIONS
91	Direct Experimental Evidence for the High Chemical Reactivity of α―and βâ€Xylopyranosides Adopting a ^{2,5} <i>B</i> Conformation in Glycosyl Transfer. Chemistry - A European Journal, 2011, 17, 7345-7356.	1.7	14
92	Synthesis, Conformational Analysis, and Evaluation as Glycosidase Inhibitors of Two Ether-Bridged Iminosugars. Journal of Carbohydrate Chemistry, 2011, 30, 641-654.	0.4	14
93	Cyclodextrins selectively modified on both rims using an O-3-debenzylative post-functionalisation, a consequence of the Sorrento meeting. Carbohydrate Research, 2012, 356, 278-281.	1.1	14
94	Chemoenzymatic synthesis of arabinomannan (AM) glycoconjugates as potential vaccines for tuberculosis. European Journal of Medicinal Chemistry, 2020, 204, 112578.	2.6	14
95	Capturing the Monomeric (L)CuH in NHCâ€Capped Cyclodextrin: Cavityâ€Controlled Chemoselective Hydrosilylation of α,βâ€Unsaturated Ketones. Angewandte Chemie, 2020, 132, 7661-7667.	1.6	13
96	Regioselective debenzylation of sugars using triisobutylaluminium. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 1999, 2, 441-448.	0.1	12
97	Hemicarbasucrose: Turning off the Exoanomeric Effect Induces Less Flexibility. Chemistry - an Asian Journal, 2008, 3, 51-58.	1.7	12
98	Synthesis of branched seven-membered 1-N-iminosugars and their evaluation as glycosidase inhibitors. Carbohydrate Research, 2012, 356, 110-114.	1.1	12
99	Duplex of capped-cyclodextrins, synthesis and cross-linking behaviour with a biopolymer. Organic and Biomolecular Chemistry, 2010, 8, 3437.	1.5	11
100	Nonâ€specific accumulation of glycosphingolipids in GNE myopathy. Journal of Inherited Metabolic Disease, 2014, 37, 297-308.	1.7	11
101	Protonated hexaphyrin–cyclodextrin hybrids: molecular recognition tuned by a kinetic-to-thermodynamic topological adaptation. Chemical Communications, 2016, 52, 9347-9350.	2.2	11
102	Chemoenzymatically synthesized GM3 analogues as potential therapeutic agents to recover nervous functionality after injury by inducing neurite outgrowth. European Journal of Medicinal Chemistry, 2018, 146, 613-620.	2.6	11
103	From 1,4-Disaccharide to 1,3-Glycosyl Carbasugar: Synthesis of a Bespoke Inhibitor of Family GH99 Endo-α-mannosidase. Organic Letters, 2018, 20, 7488-7492.	2.4	11
104	Bridging βâ€Cyclodextrin Prevents Selfâ€Inclusion, Promotes Supramolecular Polymerization, and Promotes Cooperative Interaction with Nucleic Acids. Angewandte Chemie, 2018, 130, 7879-7884.	1.6	11
105	First synthesis of 5-fluoro-(+)-MK7607, its 1-epimer and 6-deoxy derivative. Tetrahedron Letters, 2008, 49, 5548-5550.	0.7	10
106	Conformational analysis of seven-membered 1-N-iminosugars by NMR and molecular modelling. New Journal of Chemistry, 2012, 36, 1008.	1.4	10
107	Total synthesis of a sialyl Lewisx derivative for the diagnosis of cancer. Carbohydrate Research, 2014, 383, 89-96.	1.1	10
108	Cyclodextrinâ€Sandwiched Hexaphyrin Hybrids: Sideâ€toâ€Side Cavity Coupling Switched by a Temperature― and Redoxâ€Responsive Central Device. Chemistry - A European Journal, 2018, 24, 5804-5812.	1.7	10

#	Article	IF	CITATIONS
109	Synthesis, Conformational Analysis, and Complexation Study of an Iminosugar-Aza-Crown, a Sweet Chiral Cyclam Analog. Organic Letters, 2020, 22, 2344-2349.	2.4	10
110	Size-dependent compression of threaded alkyldiphosphate in head to head cyclodextrin [3]pseudorotaxanes. Chemical Science, 2022, 13, 2218-2225.	3.7	9
111	Facile preparation of two tetrols from permethylated α-cyclodextrin and unambiguous NMR analysis. Tetrahedron Letters, 2011, 52, 5273-5276.	0.7	8
112	Precise Rate Control of Pseudorotaxane Dethreading by pH-Responsive Selectively Functionalized Cyclodextrins. Organic Letters, 2021, 23, 7938-7942.	2.4	8
113	Synthesis of Methoxy-Substituted Exocyclic (E)- and (Z)-Unsaturated Methyl Pyranosides and a Study of Their Reactivity towards Lewis Acids. European Journal of Organic Chemistry, 2003, 2003, 2678-2683.	1.2	7
114	Efficient synthesis of chloro-derivatives of sialosyllactosylceramide, and their enhanced inhibitory effect on epidermal growth factor receptor activation. Oncology Letters, 2014, 7, 933-940.	0.8	7
115	Synthesis and cytotoxicity assay of four ganglioside GM3 analogues. European Journal of Medicinal Chemistry, 2014, 75, 247-257.	2.6	7
116	Synthesis of pyrrolidine-based analogues of 2-acetamidosugars asÂN-acetyl-d-glucosaminidase inhibitors. Carbohydrate Research, 2015, 409, 56-62.	1.1	7
117	Chemoenzymatically synthesized ganglioside GM3 analogues with inhibitory effects on tumor cell growth and migration. European Journal of Medicinal Chemistry, 2019, 165, 107-114.	2.6	7
118	Diisobutylaluminium hydride (DIBAL-H) as a molecular scalpel: a new mechanistic proposal for a spiroketal rearrangement. Tetrahedron Letters, 2004, 45, 8165-8168.	0.7	6
119	Triisobutylaluminium (TIBAL) Promoted Rearrangement of C-glycosides. Molecules, 2005, 10, 843-858.	1.7	6
120	Regio―and Stereocontrolled Synthesis of 2dâ€Deoxy Lewis ^x Pentasaccharide. European Journal of Organic Chemistry, 2011, 2011, 7133-7139.	1.2	6
121	Targeting the Pentose Phosphate Pathway: Characterization of a New 6PGL Inhibitor. Biophysical Journal, 2018, 115, 2114-2126.	0.2	6
122	A Concise Synthesis of Oligosaccharides Derived From Lipoarabinomannan (LAM) with Glycosyl Donors Having a Nonparticipating Group at C2. European Journal of Organic Chemistry, 2020, 2020, 2033-2044.	1.2	6
123	Novel Vaccine Candidates against Tuberculosis. Current Medicinal Chemistry, 2020, 27, 5095-5118.	1.2	6
124	Cavity ontrolled Coordination of Square Planar Metal Complexes and Substrate Selectivity by NHC apped Cyclodextrins (ICyDs). ChemCatChem, 2022, 14, .	1.8	6
125	Î ³ -Aminoalcohol rearrangement applied to pentahydroxylated azepanes provides pyrrolidines epimeric to homoDMDP. Organic and Biomolecular Chemistry, 2015, 13, 3446-3456.	1.5	5
126	Design, synthesis and biological evaluation of new ganglioside GM3 analogues as potential agents for cancer therapy. European Journal of Medicinal Chemistry, 2020, 189, 112065.	2.6	5

#	Article	IF	CITATIONS
127	Functional Role of Glycosphingolipids in Cancer. Current Medicinal Chemistry, 2020, 27, 3913-3924.	1.2	5
128	Synthesis and conformational analysis of bicyclic mimics of α- and β-d-glucopyranosides adopting the biologically relevant 2,5B conformation. Carbohydrate Research, 2012, 361, 219-224.	1.1	4
129	Chemoenzymatic Synthesis of Glycoconjugates Mediated by Regioselective Enzymatic Hydrolysis of Acetylated 2â€Amino Pyranose Derivatives. European Journal of Organic Chemistry, 2019, 2019, 3622-3631.	1.2	4
130	lminosugar C â€Glycosides Work as Pharmacological Chaperones of NAGLU, a Glycosidase Involved in MPS IIIB Rare Disease**. Chemistry - A European Journal, 2021, 27, 11291-11297.	1.7	4
131	Controlled Decoration of [60]Fullerene with Polymannan Analogues and Amino Acid Derivatives through Malondiamide-Based Linkers. Molecules, 2022, 27, 2776.	1.7	4
132	Direct Synthesis of Pseudo-Disaccharides by Rearrangement of Unsaturated Disaccharides. European Journal of Organic Chemistry, 1999, 1999, 2103-2117.	1.2	3
133	Carbohydrate–carbohydrate interaction: from hypothesis to confirmation. Carbohydrate Chemistry, 0, , 238-254.	0.3	3
134	Total Synthesis of the Epimer at C-6â \in ² of the Miharamycin B Framework. Synlett, 2009, 2009, 1269-1272.	1.0	2
135	Bi(OTf)3-mediated intramolecular epoxide opening for bicyclic azepane synthesis. Journal of Carbohydrate Chemistry, 2019, 38, 139-149.	0.4	2
136	Programmed Synthesis of Heptaâ€Differentiated β yclodextrin: 1 out of 117655 Arrangements. Angewandte Chemie, 2021, 133, 12197-12203.	1.6	2
137	Functionalized Cyclodextrins and Their Applications in Biodelivery. , 2020, , 385-423.		2
138	Synthesis and NMR elucidation of four novel 2-(trimethylsilyl)ethyl glycosides. Research on Chemical Intermediates, 2014, 40, 1557-1564.	1.3	1
139	Functionalized Cyclodextrins and Their Applications in Biodelivery. , 2019, , 1-39.		1
140	Janus-type homo-, hetero- and mixed valence-bimetallic complexes with one metal encapsulated in a cyclodextrin. Chemical Communications, 2022, 58, 4516-4519.	2.2	1
141	Trimethylaluminum-Promoted Rearrangements of Unsaturated Sugars into Cyclohexanes ChemInform, 2004, 35, no.	0.1	0
142	The First Synthesis of Substituted Azepanes Mimicking Monosaccharides: A New Class of Potent Glycosidase Inhibitors ChemInform, 2004, 35, no.	0.1	0
143	Chimie et biochimie des hydrates de carbone. Comptes Rendus Chimie, 2011, 14, 1-2.	0.2	0

144 Innenrücktitelbild: Cyclodextrin-Induced Auto-Healing of Hybrid Polyoxometalates (Angew. Chem.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

#	Article	IF	CITATIONS
145	Inside Back Cover: Cyclodextrin-Induced Auto-Healing of Hybrid Polyoxometalates (Angew. Chem. Int.) Tj ETQq1 🕻	1	4 ggBT /Overl
146	Synthesis and characterization of four novel 2-(trimethylsilyl)ethyl glycosides. Research on Chemical Intermediates, 2015, 41, 1107-1113.	1.3	0
147	Frontispiece: Confinement of Metal-N-Heterocyclic Carbene Complexes to Control Reactivity in Catalytic Reactions. Chemistry - A European Journal, 2018, 24, .	1.7	0
148	From Sugars to Carba-Sugars. , 2005, , .		0
149	Highlighting the DCO‧CF 2020 Award Winners – A Valuable Collaboration with EurJOC. European Journal of Organic Chemistry, 2022, 2022, .	1.2	0