
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7420284/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Informal electronic waste recycling: A sector review with special focus on China. Waste Management, 2011, 31, 731-742.	3.7	441
2	A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective. Batteries, 2019, 5, 68.	2.1	288
3	E-waste collection channels and household recycling behaviors in Taizhou of China. Journal of Cleaner Production, 2014, 80, 87-95.	4.6	172
4	Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors. Minerals Engineering, 2009, 22, 395-401.	1.8	164
5	TMS 2010 materials and society symposium: Making a "Sustainable―world. Jom, 2009, 61, 17-18.	0.9	158
6	Challenges of the Circular Economy: A Material, Metallurgical, and Product Design Perspective. Annual Review of Materials Research, 2019, 49, 253-274.	4.3	110
7	Fundamental limits for the recycling of end-of-life vehicles. Minerals Engineering, 2006, 19, 433-449.	1.8	99
8	Quantifying the quality loss and resource efficiency of recycling by means of exergy analysis. Journal of Cleaner Production, 2007, 15, 907-913.	4.6	99
9	An evaluation of hydroxamate collectors for malachite flotation. Separation and Purification Technology, 2017, 183, 258-269.	3.9	95
10	Raw material â€~criticality'—sense or nonsense?. Journal Physics D: Applied Physics, 2017, 50, 123002.	1.3	94
11	Dynamic modelling of E-waste recycling system performance based on product design. Minerals Engineering, 2010, 23, 192-210.	1.8	92
12	Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium. Resources Policy, 2017, 52, 327-335.	4.2	91
13	Process Knowledge, System Dynamics, and Metal Ecology. Journal of Industrial Ecology, 2008, 8, 23-43.	2.8	89
14	Digitalizing the Circular Economy. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 3194-3220.	1.0	87
15	Recycling of distributed aluminium turning scrap. Minerals Engineering, 2002, 15, 963-970.	1.8	84
16	Aluminium Recycling and Environmental Issues of Salt Slag Treatment. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 1861-1875.	0.9	82
17	Simulation-based design for resource efficiency of metal production and recycling systems: Cases - copper production and recycling, e-waste (LED lamps) and nickel pig iron. International Journal of Life Cycle Assessment, 2015, 20, 671-693.	2.2	76
18	The time-varying factors influencing the recycling rate of products. Resources, Conservation and Recycling, 2004, 40, 301-328.	5.3	74

MARKUS A. REUTER

#	Article	IF	CITATIONS
19	Thermodynamics data of valuable elements relevant to e-waste processing through primary and secondary copper production: a review. Journal of Cleaner Production, 2016, 131, 795-809.	4.6	72
20	Dynamic performance metrics to assess sustainability and cost effectiveness of integrated urban water systems. Resources, Conservation and Recycling, 2010, 54, 719-736.	5.3	71
21	A thermodynamic approach to the compatibility of materials combinations for recycling. Resources, Conservation and Recycling, 2004, 43, 1-19.	5.3	65
22	Product-Centric Simulation-Based Design for Recycling: Case of LED Lamp Recycling. Journal of Sustainable Metallurgy, 2015, 1, 4-28.	1.1	65
23	Life cycle impact assessment of the average passenger vehicle in the Netherlands. International Journal of Life Cycle Assessment, 2003, 8, 297-304.	2.2	63
24	Conversion of magnesium fluoride to magnesium hydroxide. Minerals Engineering, 2003, 16, 273-281.	1.8	61
25	Simulation-based exergy, thermo-economic and environmental footprint analysis of primary copper production. Minerals Engineering, 2019, 131, 51-65.	1.8	61
26	Dynamic modelling and optimisation of the resource cycle of passenger vehicles. Minerals Engineering, 2002, 15, 1001-1016.	1.8	60
27	A new paradigm for waste management. Waste Management, 2000, 20, 633-638.	3.7	59
28	The influence of particle size reduction and liberation on the recycling rate of end-of-life vehicles. Minerals Engineering, 2004, 17, 331-347.	1.8	55
29	Exergy as a tool for evaluation of the resource efficiency of recycling systems. Minerals Engineering, 2007, 20, 862-874.	1.8	55
30	Flow of molten slag and iron at 1500 °C to 1600 °C through packed coke beds. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2005, 36, 765-776.	1.0	50
31	Limits of Design for Recycling and "Sustainability― A Review. Waste and Biomass Valorization, 2011, 2, 183-208.	1.8	48
32	A simulation model of the comminution–liberation of recycling streams. International Journal of Mineral Processing, 2005, 75, 255-281.	2.6	47
33	Statistical entropy analysis as tool for circular economy: Proof of concept by optimizing a lithium-ion battery waste sieving system. Journal of Cleaner Production, 2019, 212, 1568-1579.	4.6	46
34	Modelling of aluminium scrap melting in a rotary furnace. Minerals Engineering, 2006, 19, 299-308.	1.8	45
35	Top submerged lance direct zinc smelting. Minerals Engineering, 2009, 22, 742-751.	1.8	45
36	Exergy losses during recycling and the resource efficiency of product systems. Resources, Conservation and Recycling, 2007, 52, 219-233.	5.3	44

#	Article	IF	CITATIONS
37	The intelligent supervisory control of submerged-arc furnaces. Jom, 1996, 48, 49-51.	0.9	43
38	The use of fuzzy rule models to link automotive design to recycling rate calculation. Minerals Engineering, 2007, 20, 875-890.	1.8	43
39	A contribution to understanding the flotation behavior of lithium metal oxides and spheroidized graphite for lithium-ion battery recycling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127111.	2.3	43
40	Opportunities and limits of recycling: A dynamic-model-based analysis. MRS Bulletin, 2012, 37, 339-347.	1.7	42
41	Computational Fluid Dynamic Modeling of Zinc Slag Fuming Process in Top-Submerged Lance Smelting Furnace. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2012, 43, 39-55.	1.0	42
42	Oxidation state and activities of chromium oxides in CaO-SiO2-CrOx slag system. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2002, 33, 595-603.	1.0	41
43	Distribution of elements between copper and FeO _x –CaO–SiO ₂ slags during pyrometallurgical processing of WEEE. Institutions of Mining and Metallurgy Transactions Section C: Mineral Processing and Extractive Metallurgy, 2013, 122, 165-173.	0.6	40
44	The use of linear programming in the optimal design of flotation circuits incorporating regrind mills. International Journal of Mineral Processing, 1990, 28, 15-43.	2.6	38
45	Recycling system flexibility: the fundamental solution to achieve high energy and material recovery quotas. Journal of Cleaner Production, 2008, 16, 432-449.	4.6	38
46	Challenges of digitalizing the circular economy: Assessment of the state-of-the-art of metallurgical carrier metal platform for lead and its associated technology elements. Journal of Cleaner Production, 2018, 186, 585-601.	4.6	37
47	The flotation behaviour of chromite with respect to the beneficiation of UG2 ore. Minerals Engineering, 1999, 12, 1177-1184.	1.8	36
48	Automated mineralogy as a novel approach for the compositional and textural characterization of spent lithium-ion batteries. Minerals Engineering, 2021, 169, 106924.	1.8	34
49	The application of neural nets in the metallurgical industry. Minerals Engineering, 1994, 7, 793-809.	1.8	32
50	A dynamic model for the assessment of the replacement of lead in solders. Journal of Electronic Materials, 2004, 33, 1567-1580.	1.0	29
51	Multidimensional characterization of separation processes – Part 1: Introducing kernel methods and entropy in the context of mineral processing using SEM-based image analysis. Minerals Engineering, 2019, 137, 78-86.	1.8	29
52	The ferric leaching kinetics of arsenopyrite. Hydrometallurgy, 1999, 52, 37-53.	1.8	27
53	The Amsterdam pilot on bottom ash. Minerals Engineering, 2004, 17, 363-365.	1.8	27
54	A generalized neural-net kinetic rate equation. Chemical Engineering Science, 1993, 48, 1281-1297.	1.9	26

#	Article	IF	CITATIONS
55	CFD Modeling of Swirl and Nonswirl Gas Injections into Liquid Baths Using Top Submerged Lances. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2010, 41, 35-50.	1.0	26
56	Eco-efficiency indicator framework implemented in the metallurgical industry: part 1—a comprehensive view and benchmark. International Journal of Life Cycle Assessment, 2016, 21, 1473-1500.	2.2	26
57	The Importance of Viscous and Interfacial Forces in the Hydrodynamics of the Top-Submerged-Lance Furnace. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 2403-2420.	1.0	26
58	X-ray Radioscopic Visualization of Bubbly Flows Injected Through a Top Submerged Lance into a Liquid Metal. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 124-139.	1.0	26
59	Simulation-Based Exergy Analysis of Large Circular Economy Systems: Zinc Production Coupled to CdTe Photovoltaic Module Life Cycle. Journal of Sustainable Metallurgy, 2020, 6, 34-67.	1.1	26
60	The optimization of end-of-life vehicle recycling in the european union. Jom, 2004, 56, 39-43.	0.9	25
61	Challenges in predicting the role of water chemistry in flotation through simulation with an emphasis on the influence of electrolytes. Minerals Engineering, 2018, 125, 252-264.	1.8	25
62	Copper recovery from copper(II) sulfate solutions by reduction with carbohydrates. Hydrometallurgy, 2002, 64, 131-146.	1.8	24
63	Optimal design of mineral separation circuits by use of linear programming. Chemical Engineering Science, 1988, 43, 1039-1049.	1.9	23
64	Comprehensive processing of low grade sulphidic molybdenum ores. Minerals Engineering, 2002, 15, 879-883.	1.8	23
65	Recycling light metals: Optimal thermal de-coating. Jom, 2008, 60, 47-51.	0.9	23
66	Joint recovery of graphite and lithium metal oxides from spent lithium-ion batteries using froth flotation and investigation on process water re-use. Minerals Engineering, 2022, 184, 107670.	1.8	23
67	Simulation-Based Exergy and LCA Analysis of Aluminum Recycling: Linking Predictive Physical Separation and Re-melting Process Models with Specific Alloy Production. Journal of Sustainable Metallurgy, 2020, 6, 174-189.	1.1	22
68	CFD Modelling for control of hazardous waste incinerator. Control Engineering Practice, 2003, 11, 93-101.	3.2	21
69	Conceptual process design as a prerequisite for solving environmental problems; a case study of molybdenum removal and recovery from wastewater. Minerals Engineering, 2004, 17, 205-215.	1.8	21
70	Thermodynamic metrics for measuring the "sustainability―of design for recycling. Jom, 2008, 60, 39-46.	0.9	21
71	Computational Fluid Dynamics (CFD) Investigation of Submerged Combustion Behavior in a Tuyere Blown Slag-fuming Furnace. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2012, 43, 1054-1068.	1.0	21
72	Thermodynamics of Palladium (Pd) and Tantalum (Ta) Relevant to Secondary Copper Smelting. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 317-327.	1.0	21

#	Article	IF	CITATIONS
73	CFD Modeling and Experimental Validation of Top-Submerged-Lance Gas Injection in Liquid Metal. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 1509-1525.	1.0	21
74	Decarbonizing copper production by power-to-hydrogen: A techno-economic analysis. Journal of Cleaner Production, 2021, 306, 127191.	4.6	21
75	A Fundamental Metric for Metal Recycling Applied to Coated Magnesium. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2008, 39, 500-517.	1.0	20
76	Process Modeling and Optimization of a Submerged Arc Furnace for Phosphorus Production. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2010, 41, 990-1005.	1.0	20
77	Modeling of metal-slag equilibrium processes using neural nets. Metallurgical and Materials Transactions B - Process Metallurgy and Materials Processing Science, 1992, 23, 643-650.	0.5	19
78	Distribution of elements between copper and FeO _x –CaO–SiO ₂ slags during pyroprocessing of WEEE: Part 2 – indium. Institutions of Mining and Metallurgy Transactions Section C: Mineral Processing and Extractive Metallurgy, 2014, 123, 43-52.	0.6	18
79	Thermodynamics Behavior of Germanium During Equilibrium Reactions between FeOx-CaO-SiO2-MgO Slag and Molten Copper. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 2889-2903.	1.0	18
80	Eco-efficiency indicator framework implemented in the metallurgical industry: part 2—a case study from the copper industry. International Journal of Life Cycle Assessment, 2016, 21, 1719-1748.	2.2	18
81	Galvanic interactions during the dissolution of gold in cyanide and thiourea solutions. Minerals Engineering, 1990, 3, 589-597.	1.8	17
82	Magnesium removal in the electrolytic zinc industry. Minerals Engineering, 2000, 13, 517-526.	1.8	17
83	The development of a CFD model of a submerged arc furnace for phosphorus production. Minerals Engineering, 2006, 19, 1115-1125.	1.8	17
84	CFD prediction for the performance of a heat treatment furnace. Progress in Computational Fluid Dynamics, 2007, 7, 209.	0.1	17
85	Material-Centric (AluminumÂandÂCopper) andÂProduct-Centric (Cars, WEEE, TV, Lamps, Batteries,) Tj ETQq1 I	0.784314	∙rg₿Ţ /Overlo
86	On the Use of Statistical Entropy Analysis as Assessment Parameter for the Comparison of Lithium-Ion Battery Recycling Processes. Batteries, 2019, 5, 41.	2.1	17
87	Dynamic structures in variance based data reconciliation adjustments for a chromite smelting furnace. Minerals Engineering, 2002, 15, 931-943.	1.8	16
88	Recovery of REEs, Zr(+Hf), Mn and Nb by H2SO4 leaching of eudialyte concentrate. Hydrometallurgy, 2019, 186, 176-186.	1.8	16
89	Modelling of the mass transfer in gas-sparged electrolysers with neural nets. Chemical Engineering Science, 1993, 48, 1089-1101.	1.9	15
90	Reduction of copper with cellulose in an autoclave; an alternative to electrolysis?. Minerals Engineering, 1999, 12, 393-404.	1.8	15

#	Article	IF	CITATIONS
91	Hydrothermal precipitation of arsenic compounds in the ferric–arsenic (III)–sulfate system: thermodynamic modeling. Minerals Engineering, 2003, 16, 429-440.	1.8	15
92	The energy needed to concentrate minerals from common rocks: The case of copper ore. Energy, 2019, 181, 494-503.	4.5	15
93	The simulation-based analysis of the resource efficiency of the circular economy – the enabling role of metallurgical infrastructure. Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy, 2020, 129, 229-249.	0.1	15
94	Evaluation of Recyclability of a WEEE Slag by Means of Integrative X-Ray Computer Tomography and SEM-Based Image Analysis. Minerals (Basel, Switzerland), 2020, 10, 309.	0.8	15
95	Modelling the co-ordination number of a packed bed of spheres with distributed sizes using a CT scanner. Minerals Engineering, 2006, 19, 246-255.	1.8	14
96	Property-based modelling and simulation of mechanical separation processes using dynamic binning and neural networks. Minerals Engineering, 2018, 126, 52-63.	1.8	14
97	Avoided energy cost of producing minerals: The case of iron ore. Energy Reports, 2019, 5, 364-374.	2.5	14
98	Immobilization of arsenic in crystalline form from aqueous solution by hydrothermal processing above 483.15K. Minerals Engineering, 2001, 14, 391-403.	1.8	13
99	Electrowinning Al from Al[sub 2]S[sub 3] in Molten Salt. Journal of the Electrochemical Society, 2007, 154, D334.	1.3	13
100	Simulation-Based Exergetic Analysis of NdFeB Permanent Magnet Production to Understand Large Systems. Jom, 2020, 72, 2754-2769.	0.9	13
101	Synthesis of processes for the production of environmentally clean zinc. Minerals Engineering, 1995, 8, 201-219.	1.8	12
102	Monitoring of metallurgical reactors by the use of topographic mapping of process data. Minerals Engineering, 1999, 12, 1301-1312.	1.8	12
103	Hydrothermal metallurgy: An overview of basic concepts and applications. Minerals Engineering, 2000, 13, 803-822.	1.8	12
104	A dynamic-CFD hybrid model of a submerged arc furnace for phosphorus production. Minerals Engineering, 2006, 19, 309-317.	1.8	12
105	Evaluation of the recycling of coated magnesium using exergy analysis. Minerals Engineering, 2007, 20, 913-925.	1.8	12
106	Shredding, sorting and recovery of metals from WEEE: linking design to resource efficiency. , 2012, , 163-211.		12
107	Multidimensional characterization of separation processes – Part 2: Comparability of separation efficiency. Minerals Engineering, 2020, 150, 106284.	1.8	12
108	Separation of rare earth elements from contaminants and valuable components by in-situ precipitation during the hydrometallurgical processing of eudialyte concentrate. Hydrometallurgy, 2020, 194, 105345.	1.8	12

#	Article	IF	CITATIONS
109	Characterization of hydroxyl-bearing magnesium fluoride containing physically bound water. Powder Diffraction, 2002, 17, 112-118.	0.4	11
110	Analysis of transport phenomena in a rotary-kiln hazardous waste incinerator. Progress in Computational Fluid Dynamics, 2007, 7, 25.	0.1	11
111	Study of process water recirculation in a flotation plant by means of process simulation. Minerals Engineering, 2020, 148, 106181.	1.8	11
112	Metallurgical infrastructure and technology criticality: the link between photovoltaics, sustainability, and the metals industry. Mineral Economics, 2022, 35, 503-519.	1.3	11
113	The simulation and identification of flotation processes by use of a knowledge based model. International Journal of Mineral Processing, 1992, 35, 13-49.	2.6	10
114	Direct reduction during the production of ferroniobium in an electric furnace. Minerals Engineering, 1994, 7, 279-292.	1.8	10
115	Eco-techno-economic synthesis of process routes for the production of zinc using combinatorial optimization. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1996, 27, 1031-1044.	1.0	10
116	An integrated thermochemical-systems approach to the prediction of matte composition dynamics in an Ausmelt® nickel–copper matte converter. Minerals Engineering, 2002, 15, 909-917.	1.8	10
117	Industrial ecology and waste infrastructure development: A roadmap for the Dutch waste management system. Technological Forecasting and Social Change, 2006, 73, 302-315.	6.2	10
118	Water-saving strategies in the mining industry – The potential of mineral processing simulators as a tool for their implementation. Journal of Environmental Management, 2019, 234, 546-553.	3.8	10
119	CFD Investigations of Bath Dynamics in a Pilot-Scale TSL Furnace. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 3064-3077.	1.0	10
120	The application of knowledge-based systems to the simulation of gold extraction processes. Minerals Engineering, 1991, 4, 103-119.	1.8	9
121	Oxygen transfer in agitated silica and pyrite slurries. Minerals Engineering, 2000, 13, 25-36.	1.8	9
122	Definitions and Terminology. , 2014, , 9-16.		9
123	Dynamics of Rising Bubbles in a Quiescent Slag Bath with Varying Thermo-Physical Properties. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 2843-2861.	1.0	9
124	CFD Investigation of Rotational Sloshing Waves in a Top-Submerged-Lance Metal Bath. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 2386-2394.	1.0	9
125	The influence of design variables on the flotation of pyrite in an air-sparged hydrocyclone. Minerals Engineering, 1990, 3, 483-499.	1.8	8
126	Selective removal of iron contaminations from zinc-chloride melts by cementation with zinc. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1999, 30, 607-611.	1.0	8

MARKUS A. REUTER

#	Article	IF	CITATIONS
127	Effect of dissolved metal sulphates on gas-liquid oxygen transfer in agitated quartz and pyrite slurries. Minerals Engineering, 2000, 13, 1555-1564.	1.8	8
128	UNDERSTANDING OF HAZARDOUS WASTE INCINERATION THROUGH COMPUTATIONAL FLUID-DYNAMICS SIMULATION. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2002, 37, 693-705.	0.9	8
129	Opposing scaling and fouling during electrodialysis of sodium fluoride solution in a membrane cell reactor. Hydrometallurgy, 2004, 73, 177-187.	1.8	8
130	Producing metals from common rocks: The case of gold. Resources, Conservation and Recycling, 2019, 148, 23-35.	5.3	8
131	A recycling process for thermoelectric devices developed with the support of statistical entropy analysis. Resources, Conservation and Recycling, 2020, 159, 104843.	5.3	8
132	The demand response potential in copper production. Journal of Cleaner Production, 2022, 362, 132221.	4.6	8
133	A particle packing algorithm for pellet design with a predetermined size distribution. Powder Technology, 2007, 173, 189-199.	2.1	7
134	Gold – A Key Enabler of a Circular Economy. , 2016, , 937-958.		7
135	Separation of Aluminum and Iron from Lanthanum—A Comparative Study of Solvent Extraction and Hydrolysis-Precipitation. Minerals (Basel, Switzerland), 2020, 10, 556.	0.8	7
136	Characterizing material liberation of multi-material lightweight structures from shredding experiments and finite element simulations. Minerals Engineering, 2021, 172, 107142.	1.8	7
137	Kinetic model for the carbothermic reduction of manganese dioxide. Thermochimica Acta, 1988, 125, 99-106.	1.2	6
138	Use of simulated annealing and neural nets for the eco-techno-economic synthesis of mineral and metallurgical flowsheets. Minerals Engineering, 1996, 9, 283-299.	1.8	6
139	Dealing with complexity in material cycle simulation and design. Computers and Chemical Engineering, 1999, 23, S795-S798.	2.0	6
140	CFD-based process modelling of a rotary furnace for aluminium scrap melting. Progress in Computational Fluid Dynamics, 2007, 7, 195.	0.1	6
141	A particle packing algorithm for packed beds with size distribution. Granular Matter, 2008, 10, 257-262.	1.1	6
142	Management of the Web of Water and Web of Materials. Minerals Engineering, 2010, 23, 157-174.	1.8	6
143	Resource Efficiency Evaluation of Pyrometallurgical Solutions to Minimize Iron-Rich Residues in the Roast-Leach-Electrowinning Process. Minerals, Metals and Materials Series, 2020, , 351-364.	0.3	6
144	Thermodynamic modelling of magnesium fluoride precipitation in concentrated zinc sulphate environment. Minerals Engineering, 2001, 14, 411-422.	1.8	5

MARKUS A. REUTER

#	Article	IF	CITATIONS
145	The optimization of recycling: Integrating the resource, technological, and life cycles. Jom, 2004, 56, 33-37.	0.9	5
146	Experimental Study on Aluminum Scrap Recycling. , 0, , 1075-1087.		5
147	Knowledge-based simulation and identification of various metallurgical reactors. Metallurgical and Materials Transactions B - Process Metallurgy and Materials Processing Science, 1991, 22, 541-555.	0.5	4
148	Recycling: The Role of Automation in the Resource Cycle. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2001, 34, 17-27.	0.4	4
149	Contributions to the Ohmic Drop in the Electrolysis of ZnCl2in a Molten Chloride Electrolyte. Journal of Applied Electrochemistry, 2004, 34, 1021-1027.	1.5	4
150	Analysis for Optimum Conditions for Recovery of Valuable Metals from E-waste Through Black Copper Smelting. Minerals, Metals and Materials Series, 2017, , 419-427.	0.3	4
151	A Dynamic Thermochemistry-Based Process Model for Lead Smelting in the TSL Process. Journal of Sustainable Metallurgy, 2021, 7, 964-977.	1.1	4
152	Catalytic gasification of activated carbon by CO2. Thermochimica Acta, 1989, 137, 383-386.	1.2	3
153	The simulation and identification of metallurgical kinetic processes using a generalised kinetic rate equation and trained neural nets. Minerals Engineering, 1994, 7, 1-19.	1.8	3
154	CFD Modelling for Control of a Chemical Waste Rotary Kiln Incinerator. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2001, 34, 403-408.	0.4	3
155	Simulation of slab movement and transient heating in a continuous steel reheat furnace. Progress in Computational Fluid Dynamics, 2004, 4, 46.	0.1	3
156	Modeling the Combustion Behavior of Hazardous Waste in a Rotary Kiln Incinerator. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 1823-1842.	0.9	3
157	Material and Metal Ecology. , 2008, , 2247-2260.		3
158	Steady-state simulation and optimization of gravity separation circuits by use of linear programming and expert systems. Minerals Engineering, 1991, 4, 311-327.	1.8	2
159	A semi-empirical model for the electro-osmotic dewatering of slurries between fixed electrodes. Minerals Engineering, 1992, 5, 835-849.	1.8	2
160	Towards a generalized catalogue for the identification of reaction kinetics in metallurgy and minerals processing using neural nets. Minerals Engineering, 1994, 7, 1539-1554.	1.8	2
161	The Equilib-ARMAX approach to the dynamic modelling of the melt metallurgy in DC plasma arc smelting operations. Minerals Engineering, 2006, 19, 1174-1184.	1.8	2
162	Sustainable materials processing and production—TMS 2010 materials and society symposium. Jom, 2010, 62, 20-23.	0.9	2

#	Article	IF	CITATIONS
163	An Integrated Multi-Sensor System for the In-Line Monitoring of Material Streams. , 2019, , .		2
164	Process simulation and digitalization for comprehensive life-cycle sustainability assessment of Silicon photovoltaic systems. , 2021, , .		2
165	Life Cycle Assessment of Metallurgical Processes Based on Physical Flowsheet Models. , 2016, , 179-185.		1
166	Structural Analysis of Germanium (Ge)-Containing Ferrous Calcium Silicate Magnesia Slag for Applications of Black Copper Smelting. Minerals, Metals and Materials Series, 2018, , 295-304.	0.3	1
167	On-line prediction of transient phenomena in the slag phase during ilmenite smelting. Developments in Mineral Processing, 2000, , C3-55-C3-64.	0.0	0
168	Use of CFD Modelling to Assist Control of a Hazardous Waste Incinerator at AVR-Chemie. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2003, 36, 319-324.	0.4	0
169	Special Edition on MMME06. Minerals Engineering, 2007, 20, 819-821.	1.8	Ο
170	Design and Commissioning of the Ausmelt TSL Lead Smelter at Yunnan Tin Company Limited. , 2012, , 9-21.		0
171	Process Metallurgy an Enabler of Resource Efficiency: Linking Product Design to Metallurgy in Product Centric Recycling. , 0, , 93-104.		Ο
172	Resource Efficient Metal and Material Recycling. , 2013, , 332-340.		0
173	Process Metallurgy an Enabler of Resource Efficiency: Linking Product Design to Metallurgy in Product Centric Recycling. , 2014, , 93-104.		0
174	Mechanisms of uptake of metal complexes and organics on carbon and resins: their modelling for the design of multi-component adsorption columns. , 1991, , 431-444.		0