
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7420279/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduced Mesoporous Co ₃ O ₄ Nanowires as Efficient Water Oxidation Electrocatalysts and Supercapacitor Electrodes. Advanced Energy Materials, 2014, 4, 1400696.	10.2	852
2	Direct Observation on Reaction Intermediates and the Role of Bicarbonate Anions in CO ₂ Electrochemical Reduction Reaction on Cu Surfaces. Journal of the American Chemical Society, 2017, 139, 15664-15667.	6.6	468
3	Recent Advances on Electro-Oxidation of Ethanol on Pt- and Pd-Based Catalysts: From Reaction Mechanisms to Catalytic Materials. Catalysts, 2015, 5, 1507-1534.	1.6	379
4	B-Doped Pd Catalyst: Boosting Room-Temperature Hydrogen Production from Formic Acid–Formate Solutions. Journal of the American Chemical Society, 2014, 136, 4861-4864.	6.6	364
5	Transition-Metal Single Atoms in a Graphene Shell as Active Centers for Highly Efficient Artificial Photosynthesis. CheM, 2017, 3, 950-960.	5.8	326
6	Boosting Formate Production in Electrocatalytic CO ₂ Reduction over Wide Potential Window on Pd Surfaces. Journal of the American Chemical Society, 2018, 140, 2880-2889.	6.6	310
7	Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. Physical Chemistry Chemical Physics, 2014, 16, 20360-20376.	1.3	296
8	Promoting Effect of Ni(OH) ₂ on Palladium Nanocrystals Leads to Greatly Improved Operation Durability for Electrocatalytic Ethanol Oxidation in Alkaline Solution. Advanced Materials, 2017, 29, 1703057.	11.1	251
9	CO ₂ Electrochemical Reduction As Probed through Infrared Spectroscopy. ACS Energy Letters, 2019, 4, 682-689.	8.8	250
10	Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Research, 2017, 10, 2181-2191.	5.8	208
11	From HCOOH to CO at Pd Electrodes: A Surface-Enhanced Infrared Spectroscopy Study. Journal of the American Chemical Society, 2011, 133, 14876-14879.	6.6	207
12	Ultralowâ€Platinum‣oading Highâ€Performance Nanoporous Electrocatalysts with Nanoengineered Surface Structures. Advanced Materials, 2010, 22, 1845-1848.	11.1	189
13	Electrocatalysis of Ethanol on a Pd Electrode in Alkaline Media: An <i>in Situ</i> Attenuated Total Reflection Surface-Enhanced Infrared Absorption Spectroscopy Study. ACS Catalysis, 2014, 4, 798-803.	5.5	182
14	Ubiquitous Strategy for Probing ATR Surface-Enhanced Infrared Absorption at Platinum Group Metalâ^'Electrolyte Interfaces. Journal of Physical Chemistry B, 2005, 109, 7900-7906.	1.2	156
15	Carbon-Supported Pdâ^'Pt Nanoalloy with Low Pt Content and Superior Catalysis for Formic Acid Electro-oxidation. Journal of Physical Chemistry C, 2010, 114, 6446-6451.	1.5	152
16	Boron-Doped Palladium Nanoparticles on Carbon Black as a Superior Catalyst for Formic Acid Electro-oxidation. Journal of Physical Chemistry C, 2009, 113, 8366-8372.	1.5	148
17	Nature of Oxygen-Containing Groups on Carbon for High-Efficiency Electrocatalytic CO ₂ Reduction Reaction. Journal of the American Chemical Society, 2019, 141, 20451-20459.	6.6	143
18	Carbon supported Pd–Ni–P nanoalloy as an efficient catalyst for ethanol electro-oxidation in alkaline media. Journal of Power Sources, 2013, 243, 369-373.	4.0	141

#	Article	IF	CITATIONS
19	Infrared Absorption Enhancement for CO Adsorbed on Au Films in Perchloric Acid Solutions and Effects of Surface Structure Studied by Cyclic Voltammetry, Scanning Tunneling Microscopy, and Surface-Enhanced IR Spectroscopy. Journal of Physical Chemistry B, 1999, 103, 2460-2466.	1.2	133
20	Orientational Phase Transition in a Pyridine Adlayer on Gold(111) in Aqueous Solution Studied by in Situ Infrared Spectroscopy and Scanning Tunneling Microscopy. Langmuir, 1998, 14, 6992-6998.	1.6	131
21	Interfacial Structure of Water as a New Descriptor of the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 22397-22402.	7.2	125
22	Li Electrochemical Tuning of Metal Oxide for Highly Selective CO ₂ Reduction. ACS Nano, 2017, 11, 6451-6458.	7.3	123
23	Pt–CoP/C as an alternative PtRu/C catalyst for direct methanol fuel cells. Journal of Materials Chemistry A, 2016, 4, 18607-18613.	5.2	122
24	Nanostructured palladium catalyst poisoning depressed by cobalt phosphide in the electro-oxidation of formic acid for fuel cells. Nano Energy, 2016, 30, 355-361.	8.2	107
25	In Situ Iridium LIII-Edge X-ray Absorption and Surface Enhanced Raman Spectroscopy of Electrodeposited Iridium Oxide Films in Aqueous Electrolytes. Journal of Physical Chemistry B, 2002, 106, 3681-3686.	1.2	104
26	Pd–Cu/C electrocatalysts synthesized by one-pot polyol reduction toward formic acid oxidation: Structural characterization and electrocatalytic performance. International Journal of Hydrogen Energy, 2015, 40, 1726-1734.	3.8	97
27	Facile Fabrication of Ultrafine Copper Nanoparticles in Organic Solvent. Nanoscale Research Letters, 2009, 4, 705-8.	3.1	92
28	Electrocatalytic Activities of Oxygen Reduction Reaction on Pd/C and Pd–B/C Catalysts. Journal of Physical Chemistry C, 2017, 121, 3416-3423.	1.5	91
29	Surfactant-Free Synthesis of Carbon-Supported Palladium Nanoparticles and Size-Dependent Hydrogen Production from Formic Acid–Formate Solution. ACS Applied Materials & Interfaces, 2017, 9, 24678-24687.	4.0	91
30	Bioâ€Inspired Leafâ€Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst. Advanced Science, 2015, 2, 1500003.	5.6	90
31	Recent applications of in situ ATR-IR spectroscopy in interfacial electrochemistry. Current Opinion in Electrochemistry, 2017, 1, 73-79.	2.5	83
32	Controllable Increase of Boron Content in B-Pd Interstitial Nanoalloy To Boost the Oxygen Reduction Activity of Palladium. Chemistry of Materials, 2017, 29, 10060-10067.	3.2	83
33	Combined Surface-Enhanced Infrared Spectroscopy and First-Principles Study on Electro-Oxidation of Formic Acid at Sb-Modified Pt Electrodes. Journal of Physical Chemistry C, 2010, 114, 3102-3107.	1.5	82
34	Mechanistic Analysis-Guided Pd-Based Catalysts for Efficient Hydrogen Production from Formic Acid Dehydrogenation. ACS Catalysis, 2020, 10, 3921-3932.	5.5	82
35	Palladium nanocrystals bound by {110} or {100} facets: from one pot synthesis to electrochemistry. Chemical Communications, 2012, 48, 8362.	2.2	81
36	Infrared Spectroelectrochemical Study of Dissociation and Oxidation of Methanol at a Palladium Electrode in Alkaline Solution. Langmuir, 2013, 29, 1709-1716.	1.6	81

#	Article	IF	CITATIONS
37	In situ spectroscopic investigation of CO accumulation and poisoning on Pd black surfaces in concentrated HCOOH. Journal of Power Sources, 2012, 199, 165-169.	4.0	80
38	Carbon supported Pd-Pt-Cu nanocatalysts for formic acid electrooxidation: Synthetic screening and componential functions. Applied Catalysis B: Environmental, 2014, 147, 185-192.	10.8	80
39	Seeded-Growth Approach to Fabrication of Silver Nanoparticle Films on Silicon for Electrochemical ATR Surface-Enhanced IR Absorption Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 25721-25728.	1.2	78
40	Electrocatalysis of Ethylene Glycol Oxidation on Bare and Bi-Modified Pd Concave Nanocubes in Alkaline Solution: An Interfacial Infrared Spectroscopic Investigation. ACS Catalysis, 2017, 7, 2033-2041.	5.5	77
41	Pd–PdO Interface as Active Site for HCOOH Selective Dehydrogenation at Ambient Condition. Journal of Physical Chemistry C, 2018, 122, 2081-2088.	1.5	75
42	Small Addition of Boron in Palladium Catalyst, Big Improvement in Fuel Cell's Performance: What May Interfacial Spectroelectrochemistry Tell?. ACS Applied Materials & Interfaces, 2016, 8, 7133-7138.	4.0	71
43	Probing the enhanced methanol electrooxidation mechanism on platinum-metal oxide catalyst. Applied Catalysis B: Environmental, 2021, 280, 119393.	10.8	68
44	Effects of ligands on electroless Ni–P alloy plating from alkaline citrate–ammonia solution. Surface and Coatings Technology, 2003, 168, 300-306.	2.2	59
45	Electrocatalytic oxidation of ethanol and ethylene glycol on cubic, octahedral and rhombic dodecahedral palladium nanocrystals. Chemical Communications, 2018, 54, 2562-2565.	2.2	59
46	Extending in Situ Attenuated-Total-Reflection Surface-Enhanced Infrared Absorption Spectroscopy to Ni Electrodes. Journal of Physical Chemistry B, 2006, 110, 4162-4169.	1.2	58
47	Tunable Surface-Enhanced Infrared Absorption on Au Nanofilms on Si Fabricated by Self-Assembly and Growth of Colloidal Particles. Journal of Physical Chemistry B, 2005, 109, 15985-15991.	1.2	56
48	Seeded growth fabrication of Cu-on-Si electrodes for in situ ATR-SEIRAS applications. Electrochimica Acta, 2007, 52, 5950-5957.	2.6	56
49	Spectrometric Study of Electrochemical CO ₂ Reduction on Pd and Pd-B Electrodes. ACS Catalysis, 2021, 11, 840-848.	5.5	56
50	Study of CO Oxidation on Polycrystalline Pt Electrodes in Acidic Solution by ATR-SEIRAS. Journal of Physical Chemistry C, 2011, 115, 16378-16388.	1.5	52
51	Resolving local reaction environment toward an optimized CO ₂ -to-CO conversion performance. Energy and Environmental Science, 2022, 15, 749-759.	15.6	48
52	Mesoporous microcapsules with noble metal or noble metal oxide shells and their application in electrocatalysis. Journal of Materials Chemistry, 2004, 14, 3548.	6.7	46
53	Preparation of carbon supported Pd–Pb hollow nanospheres and their electrocatalytic activities for formic acid oxidation. Electrochemistry Communications, 2010, 12, 901-904.	2.3	40
54	Carbon monoxide mediated chemical deposition of Pt or Pd quasi-monolayer on Au surfaces with superior electrocatalysis for ethanol oxidation in alkaline media. Chemical Communications, 2016, 52, 374-377.	2.2	39

#	Article	IF	CITATIONS
55	Practically Modified Attenuated Total Reflection Surface-Enhanced IR Absorption Spectroscopy for High-Quality Frequency-Extended Detection of Surface Species at Electrodes. Analytical Chemistry, 2008, 80, 166-171.	3.2	38
56	Selective Reduction of CO ₂ to CO on an Sb-Modified Cu Electrode: Spontaneous Fabrication and Physical Insight. ACS Catalysis, 2021, 11, 6846-6856.	5.5	37
57	Steering the Glycerol Electroâ€Reforming Selectivity via Cation–Intermediate Interactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	37
58	Facile Fabrication of Pt, Pd and Ptâ^Pd Alloy Films on Si with Tunable Infrared Internal Reflection Absorption and Synergetic Electrocatalysis. Journal of Physical Chemistry C, 2009, 113, 13841-13846.	1.5	36
59	A versatile electroless approach to controlled modification of Sb on Pt surfaces towards efficient electrocatalysis of formic acid. Electrochemistry Communications, 2009, 11, 831-833.	2.3	34
60	Surface Raman spectroscopic investigation of pyridine adsorption at platinum electrodes—effects of potential and electrolyte. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3127-3133.	1.7	33
61	Manganese Dioxide Coated Graphene Nanoribbons Supported Palladium Nanoparticles as an Efficient Catalyst for Ethanol Electrooxidation in Alkaline Media. Electrochimica Acta, 2016, 203, 91-98.	2.6	33
62	In Situ Raman Spectroscopy of Single Particle Electrodes. Electrochemical and Solid-State Letters, 2001, 4, A101.	2.2	32
63	Palladium modified gold nanoparticles as electrocatalysts for ethanol electrooxidation. Journal of Power Sources, 2016, 321, 264-269.	4.0	31
64	Changing the Product Selectivity for Electrocatalysis of CO ₂ Reduction Reaction on Plated Cu Electrodes. ChemCatChem, 2019, 11, 6139-6146.	1.8	31
65	In Situ Raman Spectroscopy of Zinc Electrodes in Alkaline Solutions. Journal of the Electrochemical Society, 2003, 150, B217.	1.3	30
66	In Situ, Real-Time Raman Microscopy of Embedded Single Particle Graphite Electrodes. Journal of the Electrochemical Society, 2002, 149, A1100.	1.3	28
67	Facile fabrication of silver nanoparticles on silicon for surfaceâ€enhanced infrared and Raman analysis. Surface and Interface Analysis, 2008, 40, 81-84.	0.8	28
68	A Multifunction Lithium–Carbon Battery System Using a Dual Electrolyte. ACS Energy Letters, 2017, 2, 36-44.	8.8	28
69	Facile Aqueous Phase Synthesis of Carbon Supported B-doped Pt3Ni Nanocatalyst for Efficient Oxygen Reduction Reaction. Electrochimica Acta, 2017, 246, 242-250.	2.6	26
70	A facile method to synthesize well-dispersed PtRuMoOx and PtRuWOx nanoparticles and their electrocatalytic activities for methanol oxidation. Journal of Power Sources, 2009, 192, 285-290.	4.0	25
71	H–D kinetic isotope effects of alcohol electrooxidation on Au, Pd and Pt electrodes in alkaline solutions. Electrochemistry Communications, 2013, 37, 49-52.	2.3	25
72	Interfacial Water at a CO-Predosed Platinum Electrode: A Surface Enhanced Infrared Study with Strong Hydrogen Evolution Reaction Control. Journal of Physical Chemistry C, 2011, 115, 5584-5592.	1.5	24

#	Article	IF	CITATIONS
73	Surface-Enhanced Infrared Spectroscopic Study of a CO-Covered Pt Electrode in Room-Temperature Ionic Liquid. Journal of Physical Chemistry Letters, 2013, 4, 1582-1586.	2.1	24
74	In situ ATR–FTIR spectroscopy on Ni–P alloy electrodes. Electrochimica Acta, 2009, 54, 1834-1841.	2.6	23
75	Enhanced Electrocatalysis of Ethanol on Dealloyed Pd-Ni-P Film in Alkaline Media: an Infrared Spectroelectrochemical Investigation. Electrochimica Acta, 2015, 162, 100-107.	2.6	23
76	High Performance Ag Rich Pd-Ag Bimetallic Electrocatalyst for Ethylene Glycol Oxidation in Alkaline Media. Journal of the Electrochemical Society, 2018, 165, J3259-J3265.	1.3	23
77	In Situ Raman Spectroscopy of Single Particle Microelectrodes. Electrochemical and Solid-State Letters, 2003, 6, E35.	2.2	21
78	An alternate aqueous phase synthesis of the Pt3Co/C catalyst towards efficient oxygen reduction reaction. Chinese Journal of Catalysis, 2019, 40, 1895-1903.	6.9	21
79	Revisiting the Acetaldehyde Oxidation Reaction on a Pt Electrode by High-Sensitivity and Wide-Frequency Infrared Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 8727-8734.	2.1	21
80	Electrochemical Characterization of Nitrogen-Incorporated Tetrahedral Carbon Films Grown by a Filtered Cathodic Vacuum Arc. Electrochemical and Solid-State Letters, 2001, 4, E42.	2.2	20
81	Exploring Electrosorption at Iron Electrode with in Situ Surface-Enhanced Infrared Absorption Spectroscopy. Analytical Chemistry, 2010, 82, 5117-5124.	3.2	20
82	A comparative investigation of electrocatalysis at Pt monolayers on shape-controlled Au nanocrystals: facet effect versus strain effect. Journal of Materials Chemistry A, 2016, 4, 15845-15850.	5.2	19
83	In Situ Surface Enhanced Raman Scattering of Ruthenium Dioxide Films in Acid Electrolytes. Electrochemical and Solid-State Letters, 2001, 4, E37.	2.2	17
84	Application of Surface-Enhanced Infrared Absorption Spectroscopy to Investigate Pyridine Adsorption on Platinum-Group Electrodes. Applied Spectroscopy, 2007, 61, 1328-1333.	1.2	17
85	Synthesis of well-dispersed PtRuSnOx by ultrasonic-assisted chemical reduction and its property for methanol electrooxidation. Electrochimica Acta, 2009, 54, 4436-4440.	2.6	17
86	Interstitial B-Doping in Pt Lattice to Upgrade Oxygen Electroreduction Performance. ACS Catalysis, 2022, 12, 8848-8856.	5.5	17
87	Exploiting the Surface-Enhanced IR Absorption Effect in the Photothermally Induced Resonance AFM-IR Technique toward Nanoscale Chemical Analysis. Analytical Chemistry, 2019, 91, 10541-10548.	3.2	16
88	Selective Alcohol on Dark Cathodes by Photoelectrochemical CO ₂ Valorization and Their In Situ Characterization. ACS Energy Letters, 2019, 4, 1549-1555.	8.8	15
89	In Situ Surface-Enhanced IR Absorption Spectroscopy on CO Adducts of Iron Protoporphyrin IX Self-Assembled on a Au Electrode. Journal of Physical Chemistry B, 2006, 110, 14911-14915.	1.2	14
90	Local Coordination and Reactivity of a Pt Single-Atom Catalyst as Probed by Spectroelectrochemical and Computational Approaches. CCS Chemistry, 2021, 3, 241-251.	4.6	13

#	Article	IF	CITATIONS
91	Interfacial Structure of Water as a New Descriptor of the Hydrogen Evolution Reaction. Angewandte Chemie, 2020, 132, 22583-22588.	1.6	11
92	Deactivated Pt Electrocatalysts for the Oxygen Reduction Reaction: The Regeneration Mechanism and a Regenerative Protocol. ACS Catalysis, 2021, 11, 9293-9299.	5.5	11
93	Boosting electrocatalytic oxidation of formic acid on SnO2-decorated Pd nanosheets. Journal of Catalysis, 2021, 399, 8-14.	3.1	11
94	Alternative Aqueous Phase Synthesis of a PtRu/C Electrocatalyst for Direct Methanol Fuel Cells. Catalysts, 2021, 11, 925.	1.6	9
95	Deactivation and regeneration of a benchmark Pt/C catalyst toward oxygen reduction reaction in the presence of poisonous SO ₂ and NO. Catalysis Science and Technology, 2022, 12, 2929-2934.	2.1	8
96	Aqueous Phase Approach to Au-Modified Pt–Co/C toward Efficient and Durable Cathode Catalyst of PEMFCs. Journal of Physical Chemistry C, 2021, 125, 23821-23829.	1.5	6
97	Steering the Glycerol Electroâ€Reforming Selectivity via Cation–Intermediate Interactions. Angewandte Chemie, 2022, 134, .	1.6	6
98	Electrocatalytic CO2 and HCOOH interconversion on Pd-based catalysts. , 2022, 1, 100007.		6
99	Oxidation Kinetics of a Lead Electrode Covered with an Anodic Pb(II) Film in Sulfuric Acid Solution. Journal of the Electrochemical Society, 2003, 150, B325.	1.3	5
100	(Invited) B-Doped Pd Catalyst to Boost Formate Production in Electrochemical CO2 Reduction. ECS Meeting Abstracts, 2018, , .	0.0	0
101	(Invited) Developing Electrocatalysts for Ethanol Oxidation Reaction in Alkaline Media. ECS Meeting Abstracts, 2018, , .	0.0	Ο