Yingying Zhang

List of Publications by Citations

Source: https://exaly.com/author-pdf/742025/yingying-zhang-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8,643 48 124 91 h-index g-index citations papers 6.52 10,712 11.5 125 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
124	Carbonized Silk Fabric for Ultrastretchable, Highly Sensitive, and Wearable Strain Sensors. <i>Advanced Materials</i> , 2016 , 28, 6640-8	24	584
123	Advanced Carbon for Flexible and Wearable Electronics. <i>Advanced Materials</i> , 2019 , 31, e1801072	24	458
122	Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures. <i>Advanced Functional Materials</i> , 2017 , 27, 1606066	15.6	372
121	Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity. <i>ACS Nano</i> , 2018 , 12, 2346-2354	16.7	361
120	Carbonized Cotton Fabric for High-Performance Wearable Strain Sensors. <i>Advanced Functional Materials</i> , 2017 , 27, 1604795	15.6	296
119	Carbonized Silk Nanofiber Membrane for Transparent and Sensitive Electronic Skin. <i>Advanced Functional Materials</i> , 2017 , 27, 1605657	15.6	293
118	Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection. <i>ACS Nano</i> , 2018 , 12, 9134-9141	16.7	284
117	Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACS Nano, 2013, 7, 615	5 6:-6. †	255
116	Polymer-embedded carbon nanotube ribbons for stretchable conductors. <i>Advanced Materials</i> , 2010 , 22, 3027-31	24	253
115	Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. <i>Nature Nanotechnology</i> , 2013 , 8, 912-6	28.7	243
114	Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation. <i>ACS Applied Materials & Discrete Applied & Discrete A</i>	9.5	192
113	Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes. <i>Small</i> , 2014 , 10, 4543-61	11	189
112	Integrated textile sensor patch for real-time and multiplex sweat analysis. <i>Science Advances</i> , 2019 , 5, eaax0649	14.3	183
111	Multilayer Graphene Epidermal Electronic Skin. ACS Nano, 2018, 12, 8839-8846	16.7	180
110	Carbon nanotube yarn strain sensors. <i>Nanotechnology</i> , 2010 , 21, 305502	3.4	177
109	An All-Silk-Derived Dual-Mode E-skin for Simultaneous Temperature-Pressure Detection. <i>ACS Applied Materials & Detection and Section 2017</i> , 9, 39484-39492	9.5	151
108	Sheath-Core Graphite/Silk Fiber Made by Dry-Meyer-Rod-Coating for Wearable Strain Sensors. <i>ACS Applied Materials & Description (Control of the Applied Materials & Descriptio</i>	9.5	146

(2020-2019)

107	Self-Healable Multifunctional Electronic Tattoos Based on Silk and Graphene. <i>Advanced Functional Materials</i> , 2019 , 29, 1808695	15.6	143
106	Silk nanofibers as high efficient and lightweight air filter. <i>Nano Research</i> , 2016 , 9, 2590-2597	10	135
105	CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. <i>Nano Research</i> , 2018 , 11, 1124-1134	10	132
104	Feeding Single-Walled Carbon Nanotubes or Graphene to Silkworms for Reinforced Silk Fibers. <i>Nano Letters</i> , 2016 , 16, 6695-6700	11.5	129
103	Silk-Based Advanced Materials for Soft Electronics. <i>Accounts of Chemical Research</i> , 2019 , 52, 2916-2927	24.3	128
102	Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 7604-7611	7.1	111
101	Integration of stiff graphene and tough silk for the design and fabrication of versatile electronic materials. <i>Advanced Functional Materials</i> , 2018 , 28, 1705291	15.6	109
100	Advanced carbon materials for flexible and wearable sensors. Science China Materials, 2017, 60, 1026-10	063	108
99	Producing superior composites by winding carbon nanotubes onto a mandrel under a poly(vinyl alcohol) spray. <i>Carbon</i> , 2011 , 49, 4786-4791	10.4	100
98	Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. <i>Chemical Society Reviews</i> , 2017 , 46, 3661-3715	58.5	97
97	Substrate-induced Raman frequency variation for single-walled carbon nanotubes. <i>Journal of the American Chemical Society</i> , 2005 , 127, 17156-7	16.4	96
96	Weft-Knitted Fabric for a Highly Stretchable and Low-Voltage Wearable Heater. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700193	6.4	95
95	Printable Smart Pattern for Multifunctional Energy-Management E-Textile. <i>Matter</i> , 2019 , 1, 168-179	12.7	92
94	Carbon Nanotube-Enhanced Growth of Silicon Nanowires as an Anode for High-Performance Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2012 , 2, 87-93	21.8	85
93	Intrinsically Stretchable and Conductive Textile by a Scalable Process for Elastic Wearable Electronics. <i>ACS Applied Materials & Acs Applied & Ac</i>	9.5	84
92	Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams. <i>ACS Nano</i> , 2009 , 3, 2157-62	16.7	83
91	Physical sensors for skin-inspired electronics. <i>Informal</i> Materilly, 2020 , 2, 184-211	23.1	80
90	Bioinspired Fluffy Fabric with In Situ Grown Carbon Nanotubes for Ultrasensitive Wearable Airflow Sensor. <i>Advanced Materials</i> , 2020 , 32, e1908214	24	80

89	Stable and Biocompatible Carbon Nanotube Ink Mediated by Silk Protein for Printed Electronics. <i>Advanced Materials</i> , 2020 , 32, e2000165	24	78
88	Splash-Resistant and Light-Weight Silk-Sheathed Wires for Textile Electronics. <i>Nano Letters</i> , 2018 , 18, 7085-7091	11.5	77
87	Fast Growth and Broad Applications of 25-Inch Uniform Graphene Glass. <i>Advanced Materials</i> , 2017 , 29, 1603428	24	75
86	Electrospun polyetherimide electret nonwoven for bi-functional smart face mask. <i>Nano Energy</i> , 2017 , 34, 562-569	17.1	73
85	Laser Writing of Janus Graphene/Kevlar Textile for Intelligent Protective Clothing. <i>ACS Nano</i> , 2020 , 14, 3219-3226	16.7	71
84	In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency. <i>Nanoscale</i> , 2013 , 5, 3367-72	7.7	70
83	Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method. <i>Nanoscale</i> , 2017 , 9, 10784-10793	7.7	68
82	Silk-Derived Highly Active Oxygen Electrocatalysts for Flexible and Rechargeable ZnAir Batteries. <i>Chemistry of Materials</i> , 2019 , 31, 1023-1029	9.6	65
81	State of the art of single-walled carbon nanotube synthesis on surfaces. <i>Advanced Materials</i> , 2014 , 26, 5898-922	24	60
80	Controlled Synthesis of Ultralong Carbon Nanotubes with Perfect Structures and Extraordinary Properties. <i>Accounts of Chemical Research</i> , 2017 , 50, 179-189	24.3	56
79	Transfer-Medium-Free Nanofiber-Reinforced Graphene Film and Applications in Wearable Transparent Pressure Sensors. <i>ACS Nano</i> , 2019 , 13, 5541-5548	16.7	55
78	Optical visualization of individual ultralong carbon nanotubes by chemical vapour deposition of titanium dioxide nanoparticles. <i>Nature Communications</i> , 2013 , 4, 1727	17.4	54
77	Superelastic EGaIn Composite Fibers Sustaining 500% Tensile Strain with Superior Electrical Conductivity for Wearable Electronics. <i>ACS Applied Materials & Description of Materials & Description & Description of Materials & Description of Materials & Description of Materials & Description & Desc</i>	9.5	52
76	Raman Spectra Variation of Partially Suspended Individual Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2007 , 111, 1983-1987	3.8	48
75	Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber. <i>Nano Research</i> , 2018 , 11, 2347-2356	10	46
74	Epitaxial superconducting EMoN films grown by a chemical solution method. <i>Journal of the American Chemical Society</i> , 2011 , 133, 20735-7	16.4	43
73	Natural Biopolymers for Flexible Sensing and Energy Devices. <i>Chinese Journal of Polymer Science</i> (English Edition), 2020 , 38, 459-490	3.5	41
72	Silk-Derived 2D Porous Carbon Nanosheets with Atomically-Dispersed Fe-N -C Sites for Highly Efficient Oxygen Reaction Catalysts. <i>Small</i> , 2019 , 15, e1804966	11	40

(2021-2015)

71	Synthesis of three-dimensional carbon nanotube/graphene hybrid materials by a two-step chemical vapor deposition process. <i>Carbon</i> , 2015 , 86, 358-362	10.4	40
70	Temperature Coefficients of Raman Frequency of Individual Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2007 , 111, 14031-14034	3.8	38
69	Growth of large-area aligned pentagonal graphene domains on high-index copper surfaces. <i>Nano Research</i> , 2016 , 9, 2182-2189	10	38
68	Molybdenum Disulfide Nanosheets Aligned Vertically on Carbonized Silk Fabric as Smart Textile for Wearable Pressure-Sensing and Energy Devices. <i>ACS Applied Materials & Devices</i> , 2020, 12, 1182	25 ⁹ t∮83	32 ³⁷
67	Semiliquid Metal Enabled Highly Conductive Wearable Electronics for Smart Fabrics. <i>ACS Applied Materials & Acs Applied & Acs Ap</i>	9.5	37
66	Laser-Heating Effect on Raman Spectra of Individual Suspended Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2007 , 111, 1988-1992	3.8	33
65	Electricity-Triggered Self-Healing of Conductive and Thermostable Vitrimer Enabled by Paving Aligned Carbon Nanotubes. <i>ACS Applied Materials & District Research</i> , 12, 14315-14322	9.5	31
64	Spontaneous Alignment of Graphene Oxide in Hydrogel during 3D Printing for Multistimuli-Responsive Actuation. <i>Advanced Science</i> , 2020 , 7, 1903048	13.6	30
63	Microribbons composed of directionally self-assembled nanoflakes as highly stretchable ionic neural electrodes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 14667-14675	11.5	29
62	Smart Fibers and Textiles for Personal Health Management. ACS Nano, 2021,	16.7	29
61	Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications. <i>Nano Research</i> , 2016 , 9, 3048-3055	10	28
60	Interwall Friction and Sliding Behavior of Centimeters Long Double-Walled Carbon Nanotubes. <i>Nano Letters</i> , 2016 , 16, 1367-74	11.5	28
59	"Snowing" Graphene using Microwave Ovens. Advanced Materials, 2018, 30, e1803189	24	28
58	The reason for the low density of horizontally aligned ultralong carbon nanotube arrays. <i>Carbon</i> , 2013 , 52, 232-238	10.4	25
57	Carbonized Chinese Art Paper-Based High-Performance Wearable Strain Sensor for Human Activity Monitoring. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 2415-2421	4	21
56	Hierarchical carbon-nanotube/quartz-fiber films with gradient nanostructures for high efficiency and long service life air filters. <i>RSC Advances</i> , 2014 , 4, 54115-54121	3.7	21
55	Strain and friction induced by van der Waals interaction in individual single walled carbon nanotubes. <i>Applied Physics Letters</i> , 2007 , 90, 253113	3.4	21
54	Biomass-Derived Carbon Materials: Controllable Preparation and Versatile Applications. <i>Small</i> , 2021 , 17, e2008079	11	21

53	Multi-walled carbon nanotube-based carbon/carbon composites with three-dimensional network structures. <i>Nanoscale</i> , 2013 , 5, 6181-6	7.7	20
52	Mineral-Templated 3D Graphene Architectures for Energy-Efficient Electrodes. <i>Small</i> , 2018 , 14, e18010	0 <u>9</u> 1	19
51	A high efficiency particulate air filter based on agglomerated carbon nanotube fluidized bed. <i>Carbon</i> , 2014 , 79, 424-431	10.4	19
50	A chemical solution approach for superconducting and hard epitaxial NbC film. <i>Chemical Communications</i> , 2010 , 46, 7837-9	5.8	19
49	Calcium Gluconate Derived Carbon Nanosheet Intrinsically Decorated with Nanopapillae for Multifunctional Printed Flexible Electronics. <i>ACS Applied Materials & Decorated with Nanopapillae for Multifunctional Printed Flexible Electronics</i> . <i>ACS Applied Materials & Decorated with Nanopapillae for Multifunctional Printed Flexible Electronics</i> .	280	18
48	Preloading catalysts in the reactor for repeated growth of horizontally aligned carbon nanotube arrays. <i>Carbon</i> , 2016 , 98, 157-161	10.4	18
47	Blue rose-inspired approach towards highly graphitic carbons for efficient electrocatalytic water splitting. <i>Carbon</i> , 2019 , 150, 21-26	10.4	17
46	Recyclable and electrically conducting carbon nanotube composite films. <i>Nanoscale</i> , 2010 , 2, 418-22	7.7	17
45	Ultrasensitive, Low-Voltage Operational, and Asymmetric Ionic Sensing Hydrogel for Multipurpose Applications. <i>Advanced Functional Materials</i> , 2020 , 30, 1909616	15.6	16
44	Sweat-Driven Silk-yarn Switches Enabled by Highly Aligned Gaps for Air-conditioning Textiles. <i>Advanced Fiber Materials</i> , 2019 , 1, 197-204	10.9	16
43	Hollow core-sheath nanocarbon spheres grown on carbonized silk fabrics for self-supported and nonenzymatic glucose sensing. <i>Nanoscale</i> , 2019 , 11, 11856-11863	7.7	15
42	Hydroxyapatite-containing silk fibroin nanofibrous scaffolds for tissue-engineered periosteum. <i>RSC Advances</i> , 2016 , 6, 19463-19474	3.7	15
41	Optical methods for determining thicknesses of few-layer graphene flakes. <i>Nanotechnology</i> , 2013 , 24, 505701	3.4	15
40	Growth of high-density parallel arrays of ultralong carbon nanotubes with catalysts pinned by silica nanospheres. <i>Carbon</i> , 2013 , 52, 535-540	10.4	15
39	Scanning probe lithography for nanoimprinting mould fabrication. <i>Nanotechnology</i> , 2006 , 17, 3018-302	23.4	15
38	Flexible Electrodes for In Vivo and In Vitro Electrophysiological Signal Recording. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2100646	10.1	15
37	A double-layered carbon nanotube array with super-hydrophobicity. <i>Carbon</i> , 2009 , 47, 3332-3336	10.4	14
36	H O-Etchant-Promoted Synthesis of High-Quality Graphene on Glass and Its Application in See-Through Thermochromic Displays. <i>Small</i> , 2020 , 16, e1905485	11	14

35	Observations of 3 nm Silk Nanofibrils Exfoliated from Natural Silkworm Silk Fibers 2020 , 2, 153-160		14
34	Electronic fibers and textiles: Recent progress and perspective. <i>IScience</i> , 2021 , 24, 102716	6.1	14
33	Volatile-nanoparticle-assisted optical visualization of individual carbon nanotubes and other nanomaterials. <i>Nanoscale</i> , 2016 , 8, 13437-44	7.7	13
32	Efficient synthesis of tailored magnetic carbon nanotubes via a noncovalent chemical route. <i>Nanoscale</i> , 2011 , 3, 668-73	7.7	13
31	Graphene/graphite sheet assisted growth of high-areal-density horizontally aligned carbon nanotubes. <i>Chemical Communications</i> , 2014 , 50, 11158-61	5.8	12
30	Visualization of Graphene on Various Substrates Based on Water Wetting Behavior. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500674	4.6	12
29	Facile manipulation of individual carbon nanotubes assisted by inorganic nanoparticles. <i>Nanoscale</i> , 2013 , 5, 6584-8	7.7	11
28	Aligned carbon nanotubes sandwiched in epitaxial NbC film for enhanced superconductivity. <i>Nanoscale</i> , 2012 , 4, 2268-71	7.7	11
27	Electrochemically Enabled Embedded Three-Dimensional Printing of Freestanding Gallium Wire-like Structures. <i>ACS Applied Materials & Discrete Structures</i> , 2020 ,	9.5	11
26	Vitrimer-based soft actuators with multiple responsiveness and self-healing ability triggered by multiple stimuli. <i>Matter</i> , 2021 ,	12.7	11
25	Thermochemical Hole Burning on DPA(TCNQ)2 and MEM(TCNQ)2 Charge Transfer Complexes Using a Scanning Tunneling Microscope. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 14800-14803	3.4	10
24	Fabrication of metallic nanostructures by negative nanoimprint lithography. <i>Nanotechnology</i> , 2005 , 16, 2779-2784	3.4	10
23	Smart semiliquid metal fibers with designed mechanical properties for room temperature stimulus response and liquid welding. <i>Applied Materials Today</i> , 2020 , 20, 100738	6.6	9
22	Application of Resonance Raman Spectroscopy in the Characterization of Single-Walled Carbon Nanotubes. <i>Acta Chimica Sinica</i> , 2012 , 70, 2293	3.3	8
21	Comparative studies of yield strength and elastic compressibility between nanocrystalline and bulk cobalt. <i>Journal of Applied Physics</i> , 2012 , 111, 113506	2.5	7
20	Biomimetic Mechanically Enhanced Carbon Nanotube Fibers by Silk Fibroin Infiltration. <i>Small</i> , 2021 , 17, e2100066	11	7
19	A novel cell-scale bio-nanogenerator based on electron-ion interaction for fast light power conversion. <i>Nanoscale</i> , 2018 , 10, 526-532	7.7	7
18	A One-Step Fabricated Sheath-Core Stretchable Fiber Based on Liquid Metal with Superior Electric Conductivity for Wearable Sensors and Heaters. <i>Advanced Materials Technologies</i> ,2101618	6.8	6

17	Hydrophilic, Breathable, and Washable Graphene Decorated Textile Assisted by Silk Sericin for Integrated Multimodal Smart Wearables. <i>Advanced Functional Materials</i> ,2200162	15.6	6
16	Investigation on the Formation Mechanism of Double-Layer Vertically Aligned Carbon Nanotube Arrays via Single-Step Chemical Vapour Deposition. <i>Nano-Micro Letters</i> , 2017 , 9, 12	19.5	5
15	Seamless Graphene-Seal-Wrap as a Removable Protective Cover for Two-Dimensional Materials 2020 , 2, 215-219		4
14	Scratching of Graphene-Coated Cu Substrates Leads to Hardened Cu Interfaces with Enhanced Lubricity. <i>ACS Applied Nano Materials</i> , 2020 , 3, 1992-1998	5.6	4
13	Nanoscale color sensors made on semiconducting multi-wall carbon nanotubes. <i>Nano Research</i> , 2016 , 9, 1470-1479	10	4
12	Synthesis and Properties of Ultralong Carbon Nanotubes 2014 , 87-136		4
11	Modulus-Tailorable, Stretchable, and Biocompatible Carbonene Fiber for Adaptive Neural Electrode. <i>Advanced Functional Materials</i> ,2107360	15.6	4
10	Numerical Evaluation and Prediction of Porous Implant Design and Flow Performance. <i>BioMed Research International</i> , 2018 , 2018, 1215021	3	4
9	Fabrication of metal suspending nanostructures by nanoimprint lithography (NIL) and isotropic reactive ion etching (RIE). <i>Science in China Series D: Earth Sciences</i> , 2009 , 52, 1181-1186		3
8	Highly Regulatable Heat Conductance of GrapheneBericin Hybrid for Responsive Textiles. Advanced Functional Materials,2111121	15.6	3
7	Sustainable Silk-Derived Multimode Carbon Dots. <i>Small</i> , 2021 , 17, e2103623	11	3
6	Epitaxial growth and physical properties of ternary nitride thin films by polymer-assisted deposition. <i>Applied Physics Letters</i> , 2016 , 109, 081907	3.4	2
5	Carbothermal shock enabled facile and fast growth of carbon nanotubes in a second. <i>Nano Research</i> ,1	10	2
4	Silkworm Silk Fibers with Multiple Reinforced Properties Obtained through Feeding Ag Nanowires. <i>Advanced Fiber Materials</i> ,1	10.9	1
3	Hemodynamic Impact of Stenting on Carotid Bifurcation: A Potential Role of the Stented Segment and External Carotid Artery. <i>Computational and Mathematical Methods in Medicine</i> , 2021 , 2021, 7604532	2.8	0
2	Concentration gradient induced in situ formation of MOF tubes. <i>Chemical Communications</i> , 2021 , 57, 7300-7303	5.8	O
1	Mechanically Reinforced Silkworm Silk Fiber by Hot Stretching <i>Research</i> , 2022 , 2022, 9854063	7.8	0