Peter C Wainwright

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7419348/publications.pdf

Version: 2024-02-01

47 papers 3,466 citations

218592 26 h-index 223716 46 g-index

49 all docs

49 docs citations

49 times ranked 3272 citing authors

#	Article	IF	Citations
1	A novel intramandibular joint facilitates feeding versatility in the sixbar distichodus. Journal of Experimental Biology, 2022, 225, .	0.8	4
2	Phylogenomic analysis of Syngnathidae reveals novel relationships, origins of endemic diversity and variable diversification rates. BMC Biology, 2022, 20, 75.	1.7	19
3	Prolonged morphological expansion of spiny-rayed fishes following the end-Cretaceous. Nature Ecology and Evolution, 2022, 6, 1211-1220.	3.4	39
4	A Multifunction Trade-Off has Contrasting Effects on the Evolution of Form and Function. Systematic Biology, 2021, 70, 681-693.	2.7	14
5	The deep sea is a hot spot of fish body shape evolution. Ecology Letters, 2021, 24, 1788-1799.	3.0	28
6	Reevaluating claims of ecological speciation in <i>Halichoeres bivittatus</i> . Ecology and Evolution, 2021, 11, 11449-11456.	0.8	1
7	Colour dimorphism in labrid fishes as an adaptation to life on coral reefs. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200167.	1.2	8
8	Decoupled jaws promote trophic diversity in cichlid fishes. Evolution; International Journal of Organic Evolution, 2020, 74, 950-961.	1.1	19
9	A peacock bass (<i>Cichla</i>) functional novelty relaxes a constraint imposed by the classic cichlid pharyngeal jaw innovation. Biological Journal of the Linnean Society, 2020, 130, 382-394.	0.7	3
10	The influence of size on body shape diversification across Indoâ€Pacific shore fishes*. Evolution; International Journal of Organic Evolution, 2019, 73, 1873-1884.	1.1	26
11	Geography of speciation affects rate of trait divergence in haemulid fishes. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182852.	1.2	9
12	Adaptive radiation in labrid fishes: A central role for functional innovations during 65 My of relentless diversification. Evolution; International Journal of Organic Evolution, 2019, 73, 346-359.	1.1	17
13	Reef fish functional traits evolve fastest at trophic extremes. Nature Ecology and Evolution, 2019, 3, 191-199.	3.4	23
14	How hummingbirds stay nimble on the wing. Science, 2018, 359, 636-637.	6.0	0
15	Phylogenetics and geography of speciation in New World Halichoeres wrasses. Molecular Phylogenetics and Evolution, 2018, 121, 35-45.	1.2	18
16	Multilocus phylogeny, divergence times, and a major role for the benthic-to-pelagic axis in the diversification of grunts (Haemulidae). Molecular Phylogenetics and Evolution, 2018, 121, 212-223.	1.2	47
17	Building trophic specializations that result in substantial niche partitioning within a young adaptive radiation. Journal of Anatomy, 2018, 232, 173-185.	0.9	21
18	Extremely fast feeding strikes are powered by elastic recoil in a seahorse relative, the snipefish, <i>> Macroramphosus scolopax </i> >. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181078.	1.2	20

#	Article	IF	CITATIONS
19	Feeding ecology underlies the evolution of cichlid jaw mobility. Evolution; International Journal of Organic Evolution, 2018, 72, 1645-1655.	1.1	29
20	New insights on the sister lineage of percomorph fishes with an anchored hybrid enrichment dataset. Molecular Phylogenetics and Evolution, 2017, 110, 27-38.	1.2	40
21	Replicated divergence in cichlid radiations mirrors a major vertebrate innovation. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20151413.	1.2	50
22	How warm is too warm for the life cycle of actinopterygian fishes?. Scientific Reports, 2015, 5, 11597.	1.6	15
23	Turbulence, Temperature, and Turbidity: The Ecomechanics of Predator-Prey Interactions in Fishes. Integrative and Comparative Biology, 2015, 55, 6-20.	0.9	65
24	Identification of the notothenioid sister lineage illuminates the biogeographic history of an Antarctic adaptive radiation. BMC Evolutionary Biology, 2015, 15, 109.	3.2	52
25	Why are marine adaptive radiations rare in Hawai'i?. Molecular Ecology, 2015, 24, 523-524.	2.0	4
26	Origins, Innovations, and Diversification of Suction Feeding in Vertebrates. Integrative and Comparative Biology, 2015, 55, 134-145.	0.9	97
27	Are 100 enough? Inferring acanthomorph teleost phylogeny using Anchored Hybrid Enrichment. BMC Evolutionary Biology, 2015, 15, 113.	3.2	40
28	Body ram, not suction, is the primary axis of suction feeding diversity in spiny-rayed fishes. Journal of Experimental Biology, 2015, 219, 119-28.	0.8	41
29	Biting disrupts integration to spur skull evolution in eels. Nature Communications, 2014, 5, 5505.	5.8	60
30	The Evolution of Pharyngognathy: A Phylogenetic and Functional Appraisal of the Pharyngeal Jaw Key Innovation in Labroid Fishes and Beyond. Systematic Biology, 2012, 61, 1001-1027.	2.7	204
31	How to surprise a copepod: Strike kinematics reduce hydrodynamic disturbance and increase stealth of suctionâ€feeding fish. Limnology and Oceanography, 2009, 54, 2201-2212.	1.6	62
32	Stereotypy, flexibility and coordination: key concepts in behavioral functional morphology. Journal of Experimental Biology, 2008, 211, 3523-3528.	0.8	84
33	Suction feeding mechanics, performance, and diversity in fishes. Integrative and Comparative Biology, 2007, 47, 96-106.	0.9	149
34	The forces exerted by aquatic suction feeders on their prey. Journal of the Royal Society Interface, 2007, 4, 553-560.	1.5	78
35	Functional Versus Morphological Diversity in Macroevolution. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 381-401.	3.8	294
36	Time resolved measurements of the flow generated by suction feeding fish. Experiments in Fluids, 2007, 43, 713-724.	1.1	35

3

#	Article	lF	CITATIONS
37	TESTING FOR DIFFERENT RATES OF CONTINUOUS TRAIT EVOLUTION USING LIKELIHOOD. Evolution; International Journal of Organic Evolution, 2006, 60, 922-933.	1.1	516
38	Ontogeny of suction feeding capacity in snook, Centropomus undecimalis. Journal of Experimental Zoology Part A, Comparative Experimental Biology, 2006, 305A, 246-252.	1.3	21
39	COMPARATIVE ANALYSIS OF MORPHOLOGICAL DIVERSITY: DOES DISPARITY ACCUMULATE AT THE SAME RATE IN TWO LINEAGES OF CENTRARCHID FISHES?. Evolution; International Journal of Organic Evolution, 2005, 59, 1783-1794.	1.1	91
40	Many-to-One Mapping of Form to Function: A General Principle in Organismal Design?. Integrative and Comparative Biology, 2005, 45, 256-262.	0.9	375
41	EVOLUTIONARY DYNAMICS OF COMPLEX BIOMECHANICAL SYSTEMS: AN EXAMPLE USING THE FOUR-BAR MECHANISM. Evolution; International Journal of Organic Evolution, 2004, 58, 495-503.	1.1	148
42	The evolution of feeding motor patterns in vertebrates. Current Opinion in Neurobiology, 2002, 12, 691-695.	2.0	52
43	Ecomorphology of Locomotion in Labrid Fishes. Environmental Biology of Fishes, 2002, 65, 47-62.	0.4	187
44	Use of sonomicrometry demonstrates the link between prey capture kinematics and suction pressure in largemouth bass. Journal of Experimental Biology, 2002, 205, 3445-3457.	0.8	89
45	Modulation of prey capture kinematics in the cheeklined wrasseOxycheilinus digrammus (Teleostei:) Tj ETQq $1\ 1$	0.784314 1.4	rgBT /Over o
46	Evolution and mechanics of long jaws in butterflyfishes (Family Chaetodontidae). Journal of Morphology, 2001, 248, 120-143.	0.6	67
47	Evaluating the use of ram and suction during prey capture by cichlid fishes. Journal of Experimental Biology, 2001, 204, 3039-3051.	0.8	160