Osama K Abou-Zied

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7419036/publications.pdf

Version: 2024-02-01

65 papers

2,194 citations

218677 26 h-index 223800 46 g-index

65 all docs

65 docs citations

65 times ranked 2572 citing authors

#	Article	IF	CITATIONS
1	Emission characteristics of carbon films in comparison with solvatochromic effects of carbon nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 266, 120442.	3.9	3
2	Controlling the emissive pathways of carbon nanoparticles by selective surface functionalization. Applied Surface Science, 2021, 566, 150618.	6.1	4
3	Photoexcited Charge Trapping Induced Quenching of Radiative Recombination Pathways in CulnS2/ZnS-Dye Nanoassemblies. Journal of Luminescence, 2021, 239, 118402.	3.1	2
4	Electronic and steric effects of platinum(<scp>ii</scp>) di-yne and poly-yne substituents on the photo-switching behaviour of stilbene: experimental and theoretical insights. Dalton Transactions, 2021, 50, 2555-2569.	3.3	5
5	Two Is Better than One? Investigating the Effect of Incorporating Re(CO)3Cl Side Chains into Pt(II) Diynes and Polyynes. Inorganic Chemistry, 2021, 60, 745-759.	4.0	8
6	p-Methoxy Azobenzene Terpolymer as a Promising Energy-Storage Liquid Crystal System. Journal of Physical Chemistry C, 2021, 125, 22472-22482.	3.1	13
7	Lifetime and dynamics of charge carriers in carbon-incorporated ZnO nanostructures for water treatment under visible light: Femtosecond transient absorption and photoluminescence study. Journal of Environmental Chemical Engineering, 2020, 8, 104097.	6.7	8
8	<p>The interaction of silica nanoparticles with catalase and human mesenchymal stem cells: biophysical, theoretical and cellular studies</p> . International Journal of Nanomedicine, 2019, Volume 14, 5355-5368.	6.7	6
9	Evidence of Increased Hydrophobicity and Dynamics inside the Tail Region of Glycolipid Self-Assemblies Using 2- <i>n</i> -Alkyl-Pyrene Derivatives to Probe Different Locations. Langmuir, 2019, 35, 9584-9592.	3.5	11
10	<p>α-synuclein interaction with zero-valent iron nanoparticles accelerates structural rearrangement into amyloid-susceptible structure with increased cytotoxic tendency</p> . International Journal of Nanomedicine, 2019, Volume 14, 4637-4648.	6.7	33
11	Optical imaging and spectroscopy of SnO2-rhodamine 6G composite's desiccation patterns. Journal of Applied Physics, 2019, 125, .	2.5	3
12	<p>Vitamin K1 As A Potential Molecule For Reducing Single-Walled Carbon Nanotubes-Stimulated α-Synuclein Structural Changes And Cytotoxicity</p> . International Journal of Nanomedicine, 2019, Volume 14, 8433-8444.	6.7	11
13	Cytotoxicity and antioxidant activity of Kamolonol acetate from Ferula pseudalliacea, and studying its interactions with calf thymus DNA (ct-DNA) and human serum albumin (HSA) by spectroscopic and molecular docking techniques. Process Biochemistry, 2019, 79, 203-213.	3.7	35
14	Selective binding of pyrene in subdomain IB of human serum albumin: Combining energy transfer spectroscopy and molecular modelling to understand protein binding flexibility. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 194, 36-44.	3.9	17
15	Insights into the molecular interaction between sucrose and \hat{l}_{\pm} -chymotrypsin. International Journal of Biological Macromolecules, 2018, 114, 950-960.	7. 5	46
16	Spectroscopic characterization of the warfarin drug-binding site of folded and unfolded human serum albumin anchored on gold nanoparticles: effect of bioconjugation on the loading capacity. RSC Advances, 2018, 8, 7523-7532.	3.6	4
17	Insights into the molecular interaction between two polyoxygenated cinnamoylcoumarin derivatives and human serum albumin. Physical Chemistry Chemical Physics, 2017, 19, 10099-10115.	2.8	36
18	Gold–silver@TiO ₂ nanocomposite-modified plasmonic photoanodes for higher efficiency dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2017, 19, 1395-1407.	2.8	52

#	Article	IF	CITATIONS
19	New Insight into the Origin of the Red/Near-Infrared Intense Fluorescence of a Crystalline 2-Hydroxychalcone Derivative: A Comprehensive Picture from the Excited-State Femtosecond Dynamics. Journal of Physical Chemistry Letters, 2017, 8, 5603-5608.	4.6	22
20	Cadmium Sulfide Nanoparticles Decorated with Au Quantum Dots as Ultrasensitive Photoelectrochemical Sensor for Selective Detection of Copper(II) Ions. Journal of Physical Chemistry C, 2016, 120, 22202-22214.	3.1	71
21	New insights into the mode of action of the lantibiotic salivaricin B. Scientific Reports, 2016, 6, 31749.	3.3	44
22	Photophysical properties of hydroxyphenyl benzazoles and their applications as fluorescent probes to study local environment in DNA, protein and lipid. Luminescence, 2016, 31, 614-625.	2.9	10
23	Comparative study of the inverse versus normal bicontinuous cubic phases of the \hat{l}^2 - <scp>d</scp> -glucopyranoside water-driven self-assemblies using fluorescent probes. RSC Advances, 2016, 6, 227-235.	3.6	3
24	Spectroscopic characterization of the binding mechanism of fluorescein and carboxyfluorescein in human serum albumin. , 2015, , .		0
25	Elucidating the mechanism of peptide interaction with membranes using the intrinsic fluorescence of tryptophan: perpendicular penetration of cecropin B-like peptides into Pseudomonas aeruginosa. RSC Advances, 2015, 5, 14214-14220.	3.6	8
26	Fluorescence characterization of water-driven self-assembled lipids and their temperature-induced phase transitions. , 2015 , , .		0
27	Alkyl mono- and di-glucoside sugar vesicles as potential drug delivery vehicles: detecting drug release using fluorescence. RSC Advances, 2015, 5, 55536-55543.	3.6	12
28	Detecting local heterogeneity and ionization ability in the head group region of different lipidic phases using modified fluorescent probes. Scientific Reports, 2015, 5, 8699.	3.3	9
29	Stereoselective synthesis and molecular modeling of chiral cyclopentanes. Carbohydrate Research, 2015, 415, 12-16.	2.3	2
30	Amphitropic liquid crystal phases from polyhydroxy sugar surfactants: Fundamental studies. , 2015, , .		0
31	Understanding the Physical and Chemical Nature of the Warfarin Drug Binding Site in Human Serum Albumin: Experimental and Theoretical Studies. Current Pharmaceutical Design, 2015, 21, 1800-1816.	1.9	40
32	Ground state spectroscopy of hydroxyquinolines: evidence for the formation of protonated species in water-rich dioxane–water mixtures. Physical Chemistry Chemical Physics, 2014, 16, 61-70.	2.8	7
33	Solvent Effect on Anthranilic Acid Spectroscopy. Journal of Physical Chemistry A, 2014, 118, 103-109.	2.5	16
34	Site-specific recognition of fluorescein by human serum albumin: A steady-state and time-resolved spectroscopic study. Dyes and Pigments, 2014, 110, 89-96.	3.7	26
35	Binding of Hydroxyquinoline Probes to Human Serum Albumin: Combining Molecular Modeling and Förster's Resonance Energy Transfer Spectroscopy to Understand Flexible Ligand Binding. Journal of Physical Chemistry B, 2013, 117, 1062-1074.	2.6	57
36	Spectroscopy of hydroxyphenyl benzazoles in solution and human serum albumin: detecting flexibility, specificity and high affinity of the warfarin drug binding site. RSC Advances, 2013, 3, 8747.	3.6	34

3

#	Article	IF	Citations
37	Effect of NH2 rotation on the fluorescence of 2-aminopurine in solution. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 261, 1-6.	3.9	5
38	Evidence of Basic Medium in the Polar Nanochannels of the Inverse Bicontinuous Cubic Phase of a Guerbet Glycolipid: A Steady-State and Time-Resolved Fluorescence Study. Journal of Physical Chemistry C, 2013, 117, 26636-26643.	3.1	17
39	Fluorescence Probing of the Temperature-Induced Phase Transition in a Glycolipid Self-Assembly: Hexagonal â†" Micellar and Cubic â†" Lamellar. Langmuir, 2012, 28, 4989-4995.	3 . 5	32
40	Revealing the ionization ability of binding site I of human serum albumin using 2-(2′-hydroxyphenyl)benzoxazole as a pH sensitive probe. Physical Chemistry Chemical Physics, 2012, 14, 2832.	2.8	48
41	Water participation in molecular recognition and protein-ligand association: Probing the drug binding site "Sudlow I" in human serum albumin. Proceedings of SPIE, 2012, , .	0.8	1
42	Characterization of the Head Group and the Hydrophobic Regions of a Glycolipid Lyotropic Hexagonal Phase Using Fluorescent Probes. Journal of Physical Chemistry C, 2011, 115, 19805-19810.	3.1	21
43	Tautomerism in 7-Hydroxyquinoline: A Combined Experimental and Theoretical Study in Water. Journal of Physical Chemistry A, 2011, 115, 4195-4201.	2.5	35
44	Exploring the Drugâ€Binding Site Sudlow I of Human Serum Albumin: The Role of Water and Trp214 in Molecular Recognition and Ligand Binding. ChemPhysChem, 2011, 12, 270-274.	2.1	54
45	Specific interaction of 7-hydroxyquinoline with Trp-214 in the drug-binding site IIA of human serum albumin. , 2010, , .		1
46	Steady-State and Time-Resolved Spectroscopy of 2,2′-Bipyridine-3,3′-diol in Solvents and Cyclodextrins: Polarity and Nanoconfinement Effects on Tautomerization. Journal of Physical Chemistry B, 2010, 114, 1069-1076.	2.6	47
47	Caging and solvent effects on the tautomeric equilibrium of 3-pyridone/3-hydroxypyridine in the ground state: a study in cyclodextrins and binary solvents. Physical Chemistry Chemical Physics, 2009, 11, 5377.	2.8	22
48	Characterization of Subdomain IIA Binding Site of Human Serum Albumin in its Native, Unfolded, and Refolded States Using Small Molecular Probes. Journal of the American Chemical Society, 2008, 130, 10793-10801.	13.7	475
49	Steady-state and time-resolved fluorescence investigation of 2-pyridone and 3-pyridone in solution and their specific binding to human serum albumin. Proceedings of SPIE, 2008, , .	0.8	4
50	Steady-state spectroscopy of new biological probes. , 2007, , .		2
51	Investigating 2,2'-Bipyridine-3,3'-diol as a Microenvironment-Sensitive Probe:  Its Binding to Cyclodextrins and Human Serum Albumin. Journal of Physical Chemistry B, 2007, 111, 9879-9885.	2.6	57
52	The role of water in solvating the hydrogen-bonding center of 2-(2′-hydroxyphenyl)benzoxazole. Chemical Physics, 2007, 337, 1-10.	1.9	55
53	Caging Effects on the Ground and Excited States of 2,2 -Bipyridine-3,3 -diol Embedded in Cyclodextrins. Journal of Physical Chemistry A, 2006, 110, 7835-7840.	2.5	35
54	Examining [2,2′-bipyridyl]-3,3′-diol as a possible DNA model base pair. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182, 192-201.	3.9	46

#	Article	IF	CITATIONS
55	A spectroscopic study of the inclusion of azulene by \hat{l}^2 - and \hat{l}^3 -cyclodextrins. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 62, 245-251.	3.9	19
56	Femtosecond fluorescence upconversion studies of excited-state proton-transfer dynamics in 2-(2′-hydroxyphenyl)benzoxazole (HBO) in liquid solution and DNA. Chemical Physics Letters, 2003, 367, 599-608.	2.6	118
57	Solvent-Dependent Photoinduced Tautomerization of 2-(2â€~-Hydroxyphenyl)benzoxazole. Journal of Physical Chemistry A, 2002, 106, 3665-3672.	2.5	178
58	Tautomerization Dynamics of a Model Base Pair in DNA. Journal of the American Chemical Society, 2001, 123, 4613-4614.	13.7	77
59	A Phototautomerizable Model DNA Base Pair. Journal of the American Chemical Society, 2000, 122, 9917-9920.	13.7	76
60	Femtosecond Dynamics of Transition States and the Concept of Concertedness:Â Nitrogen Extrusion of Azomethane Reactions. Journal of the American Chemical Society, 1998, 120, 3245-3246.	13.7	47
61	Picosecond real time study of the bimolecular reaction O(3P)+C2H4 and the unimolecular photodissociation of CH3CHO and H2CO. Journal of Chemical Physics, 1998, 109, 1293-1301.	3.0	30
62	Van der Waals Complexes of 2-Chloro-, 2-Methyl-, and 1,3-Dimethylazulene with Rare Gases: Microscopic Solvent Shifts, Structures, and Binding Energies. Journal of Physical Chemistry A, 1997, 101, 7989-7997.	2.5	5
63	Picosecond dynamics of the S2 excited state of azulene and its van der Waals complexes with Ar and Xe. Chemical Physics Letters, 1997, 266, 75-85.	2.6	13
64	Origins of the differences in solvation by alkanes and perfluoroalkanes. Chemical Physics Letters, 1994, 230, 547-554.	2.6	5
65	Ground and excited state dipole moments of pyranthione and xanthione by the electro-optic method. Chemical Physics Letters, 1993, 201, 433-436.	2.6	11