Jens Eilers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7418903/publications.pdf

Version: 2024-02-01

94269 128067 5,972 65 37 60 citations h-index g-index papers 71 71 71 6627 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Large-scale oscillatory calcium waves in the immature cortex. Nature Neuroscience, 2000, 3, 452-459.	7.1	429
2	Rapid Active Zone Remodeling during Synaptic Plasticity. Journal of Neuroscience, 2011, 31, 6041-6052.	1.7	428
3	Importance of the Intracellular Domain of NR2 Subunits for NMDA Receptor Function In Vivo. Cell, 1998, 92, 279-289.	13.5	419
4	A new class of synaptic response involving calcium release in dendritic spines. Nature, 1998, 396, 757-760.	13.7	390
5	Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 1488-1493.	3.3	370
6	Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons. Nature, 1995, 373, 155-158.	13.7	336
7	Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits. Current Biology, 2008, 18, 354-362.	1.8	304
8	NMDA Receptor-Mediated Subthreshold Ca ²⁺ Signals in Spines of Hippocampal Neurons. Journal of Neuroscience, 2000, 20, 1791-1799.	1.7	262
9	STIM2 Regulates Capacitive Ca ²⁺ Entry in Neurons and Plays a Key Role in Hypoxic Neuronal Cell Death. Science Signaling, 2009, 2, ra67.	1.6	233
10	Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia, 2014, 57, 562-571.	2.9	193
11	Bassoon Speeds Vesicle Reloading at a Central Excitatory Synapse. Neuron, 2010, 68, 710-723.	3.8	184
12	Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k. Journal of Physiology, 2003, 551, 13-32.	1.3	148
13	Ultrafast Action Potentials Mediate Kilohertz Signaling at a Central Synapse. Neuron, 2014, 84, 152-163.	3.8	111
14	Calbindin D28k targets myo-inositol monophosphatase in spines and dendrites of cerebellar Purkinje neurons. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5850-5855.	3.3	94
15	Nanodomain Coupling at an Excitatory Cortical Synapse. Current Biology, 2013, 23, 244-249.	1.8	90
16	STIM1, STIM2, and Orai1 regulate storeâ€operated calcium entry and purinergic activation of microglia. Glia, 2015, 63, 652-663.	2.5	90
17	Calcium signaling in a narrow somatic submembrane shell during synaptic activity in cerebellar Purkinje neurons Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 10272-10276.	3.3	87
18	Neurons exhibit <i>Lyz2</i> promoter activity in vivo: Implications for using LysMâ€Cre mice in myeloid cell research. European Journal of Immunology, 2016, 46, 1529-1532.	1.6	84

#	Article	IF	CITATIONS
19	GABAâ€mediated Ca 2+ signalling in developing rat cerebellar Purkinje neurones. Journal of Physiology, 2001, 536, 429-437.	1.3	82
20	Homosynaptic Long-Term Synaptic Potentiation of the "Winner―Climbing Fiber Synapse in Developing Purkinje Cells. Journal of Neuroscience, 2008, 28, 798-807.	1.7	79
21	Dendritic signal integration. Current Opinion in Neurobiology, 1997, 7, 385-390.	2.0	78
22	Quantitative two-photon Ca2+ imaging via fluorescence lifetime analysis. Cell Calcium, 2006, 40, 73-79.	1.1	75
23	Calcium Rubies: A Family of Red-Emitting Functionalizable Indicators Suitable for Two-Photon Ca ²⁺ Imaging. Journal of the American Chemical Society, 2012, 134, 14923-14931.	6.6	70
24	Axonal calcium entry during fast â€~sodium' action potentials in rat cerebellar Purkinje neurones Journal of Physiology, 1996, 495, 641-647.	1.3	69
25	Diffusional Mobility of Parvalbumin in Spiny Dendrites of Cerebellar Purkinje Neurons Quantified by Fluorescence Recovery after Photobleaching. Biophysical Journal, 2003, 84, 2599-2608.	0.2	69
26	Two-photon Na+ imaging in spines and fine dendrites of central neurons. Pflugers Archiv European Journal of Physiology, 1999, 439, 201-207.	1.3	60
27	Two-photon Na + imaging in spines and fine dendrites of central neurons. Pflugers Archiv European Journal of Physiology, 1999, 439, 201-207.	1.3	60
28	Spine neck geometry determines spino-dendritic cross-talk in the presence of mobile endogenous calcium binding proteins. Journal of Computational Neuroscience, 2009, 27, 229-243.	0.6	56
29	Pairedâ€pulse facilitation at recurrent Purkinje neuron synapses is independent of calbindin and parvalbumin during highâ€frequency activation. Journal of Physiology, 2013, 591, 3355-3370.	1.3	56
30	Localized calcium signalling and neuronal integration in cerebellar Purkinje neurones. Cell Calcium, 1996, 20, 215-226.	1.1	53
31	Local dendritic Ca2+ signaling induces cerebellar long-term depression Learning and Memory, 1997, 4, 159-168.	0.5	53
32	Adipocyte death triggers a pro-inflammatory response and induces metabolic activation of resident macrophages. Cell Death and Disease, 2021, 12, 579.	2.7	47
33	Spino-dendritic cross-talk in rodent Purkinje neurons mediated by endogenous Ca2+-binding proteins. Journal of Physiology, 2007, 581, 619-629.	1.3	46
34	Developmental Tightening of Cerebellar Cortical Synaptic Influx-Release Coupling. Journal of Neuroscience, 2015, 35, 1858-1871.	1.7	46
35	Munc13-3 Is Required for the Developmental Localization of Ca2+ Channels to Active Zones and the Nanopositioning of Cav2.1 Near Release Sensors. Cell Reports, 2018, 22, 1965-1973.	2.9	45
36	Photo-physical properties of Ca2+-indicator dyes suitable for two-photon fluorescence-lifetime recordings. Journal of Microscopy, 2007, 225, 209-213.	0.8	44

#	Article	IF	CITATIONS
37	K _V 10.1 opposes activityâ€dependent increase in Ca ²⁺ influx into the presynaptic terminal of the parallel fibre–Purkinje cell synapse. Journal of Physiology, 2015, 593, 181-196.	1.3	44
38	Parvalbumin is freely mobile in axons, somata and nuclei of cerebellar Purkinje neurones. Journal of Neurochemistry, 2007, 100, 727-735.	2.1	41
39	The Ataxia (axJ) Mutation Causes Abnormal GABAA Receptor Turnover in Mice. PLoS Genetics, 2009, 5, e1000631.	1.5	37
40	SpRET: Highly Sensitive and Reliable Spectral Measurement of Absolute FRET Efficiency. Microscopy and Microanalysis, 2011, 17, 176-190.	0.2	37
41	Munc13-3 Superprimes Synaptic Vesicles at Granule Cell-to-Basket Cell Synapses in the Mouse Cerebellum. Journal of Neuroscience, 2014, 34, 14687-14696.	1.7	37
42	Large, Stable Spikes Exhibit Differential Broadening in Excitatory and Inhibitory Neocortical Boutons. Cell Reports, 2021, 34, 108612.	2.9	35
43	P2Y1 receptors inhibit long-term depression in the prefrontal cortex. Neuropharmacology, 2010, 59, 406-415.	2.0	34
44	A method for long-term live imaging of tissue macrophages in adipose tissue explants. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E1023-E1033.	1.8	33
45	Active zone compaction correlates with presynaptic homeostatic potentiation. Cell Reports, 2021, 37, 109770.	2.9	30
46	Apparent calcium dependence of vesicle recruitment. Journal of Physiology, 2018, 596, 4693-4707.	1.3	29
47	Patch Clamp and Calcium Imaging in Brain Slices. , 1995, , 213-229.		24
48	A new culturing strategy improves functional neuronal development of human neural progenitor cells. Journal of Neurochemistry, 2009, 109, 238-247.	2.1	24
49	Calcium dependence of neurotransmitter release at a high fidelity synapse. ELife, 2021, 10, .	2.8	23
50	A use-dependent increase in release sites drives facilitation at calretinin-deficient cerebellar parallel-fiber synapses. Frontiers in Cellular Neuroscience, 2015, 9, 27.	1.8	22
51	Neocortical High Probability Release Sites Are Formed by Distinct Ca2+ Channel-to-Release Sensor Topographies during Development. Cell Reports, 2019, 28, 1410-1418.e4.	2.9	20
52	Multinucleated Giant Cells in Adipose Tissue Are Specialized in Adipocyte Degradation. Diabetes, 2021, 70, 538-548.	0.3	18
53	Myosin VI Drives Clathrin-Mediated AMPA Receptor Endocytosis to Facilitate Cerebellar Long-Term Depression. Cell Reports, 2019, 28, 11-20.e9.	2.9	15
54	Restricted diffusion of calretinin in cerebellar granule cell dendrites implies Ca ²⁺ â€dependent interactions via its EFâ€hand 5 domain. Journal of Physiology, 2013, 591, 3887-3899.	1.3	12

#	Article	IF	CITATIONS
55	Dye Loading with Patch Pipettes: Figure 1. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5201.	0.2	11
56	Diffusion and Extrusion Shape Standing Calcium Gradients During Ongoing Parallel Fiber Activity in Dendrites of Purkinje Neurons. Cerebellum, 2012, 11, 694-705.	1.4	9
57	The transgenic mouse line Igsf9- eGFP allows targeted stimulation of inferior olive efferents. Journal of Neuroscience Methods, 2018, 296, 84-92.	1.3	9
58	Photophysical properties of Na ⁺ â€indicator dyes suitable for quantitative twoâ€photon fluorescenceâ€ifetime measurements. Journal of Microscopy, 2018, 272, 136-144.	0.8	6
59	Undisturbed climbing fiber pruning in the cerebellar cortex of <scp>CX₃CR1</scp> â€deficient mice. Glia, 2020, 68, 2316-2329.	2.5	4
60	The flaginserter: a simple device for automatically marking events in video recordings. Journal of Neuroscience Methods, 1997, 78, 151-156.	1.3	3
61	Combined Fluorometric and Electrophysiological Recordings. , 2002, , 111-134.		1
62	Ca2+signals underlying synaptic plasticity in cerebellar Purkinje neurones. Seminars in Neuroscience, 1996, 8, 271-279.	2.3	0
63	Developmental Easing of Short-Term Depression in "Winner―Climbing Fibers. Frontiers in Cellular Neuroscience, 2019, 13, 183.	1.8	0
64	Combined Fluorometric and Electrophysiological Recordings. Neuromethods, 2007, , 121-148.	0.2	0
65	Neocortical High Probability Release Sites are Formed by Distinct Ca ²⁺ Channel to Release Sensor Topographies During Development. SSRN Electronic Journal, 0, , .	0.4	o