Denis Pustovoytov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7418213/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Asymmetric (Hot, Warm, Cold, Cryo) Rolling of Light Alloys: A Review. Metals, 2021, 11, 956.	1.0	18
2	Numerical Study of Grain Evolution and Dislocation Density during Asymmetric Rolling of Aluminum Alloy 7075. Key Engineering Materials, 0, 685, 162-166.	0.4	16
3	Research of edge defect formation in plate rolling by finite element method. Journal of Materials Processing Technology, 2015, 220, 96-106.	3.1	15
4	Numerical Research of Shear Strain in an Extreme Case of Asymmetric Rolling. Advanced Materials Research, 2013, 742, 476-481.	0.3	10
5	Finite element analysis of strain gradients in aluminium alloy sheets processed by asymmetric rolling. Procedia Manufacturing, 2018, 15, 129-136.	1.9	9
6	Finite element simulation of extremely high shear strain during a single-pass asymmetric warm rolling of Al-6.2Mg-0.7Mn alloy sheets. Procedia Engineering, 2017, 207, 1463-1468.	1.2	8
7	Finite Element Modeling of Shear Strain in Asymmetric and Symmetric Rolling in Multi Roll Calibers. Procedia Engineering, 2014, 81, 2469-2474.	1.2	5
8	Developing Regimes for the Asymmetric Rolling of Low-Alloy Steel Plates to Minimize Bending of the Ends of the Plate. Metallurgist, 2014, 57, 1005-1008.	0.2	5
9	Effective rough rolling of low-alloy steel. Steel in Translation, 2008, 38, 767-769.	0.1	4
10	Plate Rolling Modeling at Mill 5000 of OJSC "Magnitogorsk Iron and Steel―for Analysis and Optimization of Temperature Rates. AIP Conference Proceedings, 2010, , .	0.3	4
11	Behavior of transverse corner cracks of a slab in horizontal rollers. Steel in Translation, 2010, 40, 212-215.	0.1	4
12	Theoretical Basis and Technology Development of the Combined Process of Asymmetric Rolling and Plastic Bending. Advanced Materials Research, 2012, 586, 259-264.	0.3	4
13	Finite Element Modeling of Edge Defect Formation in Plate Rolling. Procedia Engineering, 2014, 81, 132-136.	1.2	4
14	Finite Element Analysis of Symmetric and Asymmetric Three-roll Rolling Process. MATEC Web of Conferences, 2015, 26, 03006.	0.1	4
15	Technology Development of Large-Size Bodies Manufacturing from Thick Plate Materials Based on Combined Methods of Deformation. Key Engineering Materials, 0, 685, 375-379.	0.4	4
16	Influence of microstructure on inhomogeneity of stress and strain in the deformation zone during asymmetric cold rolling of ferritic-pearlitic steels. Procedia Manufacturing, 2020, 50, 514-519.	1.9	4
17	Effect of tool path strategy and tooltip profile on geometrical feature and surface quality of Al-6061 alloy during deformation machining in bending mode. Advances in Materials and Processing Technologies, 2023, 9, 297-314.	0.8	4
18	Transverse Crack Modeling of Continuously Casted Slabs through Finite Element Method in Roughing Rolling at Wide Strip Mill. , 2010, , .		3

DENIS PUSTOVOYTOV

#	Article	IF	CITATIONS
19	Finite Element Modeling of Roll Wear during Cold Asymmetric Sheet Rolling of Aluminum Alloy 5083. MATEC Web of Conferences, 2015, 26, 01010.	0.1	3
20	Finite element simulation and comparison of a shear strain and equivalent strain during ECAP and asymmetric rolling. IOP Conference Series: Materials Science and Engineering, 2017, 293, 012007.	0.3	3
21	Physical simulation of asymmetric sheet rolling process by multicycle shear-compression testing. Procedia Engineering, 2017, 207, 1487-1492.	1.2	3
22	FEM Simulation of Influence of Asymmetric Cold Rolling on Through-Thickness Strain Gradient in Low-Carbon Steel Sheets. Defect and Diffusion Forum, 0, 385, 455-460.	0.4	3
23	Study of Different Large Bodies Manufacturing Based on Combined Methods of Deformation. MATEC Web of Conferences, 2015, 26, 03007.	0.1	2
24	Modeling of the roll wear and material damage during high-ratio differential speed rolling of aluminium alloy 7075. MATEC Web of Conferences, 2016, 80, 04006.	0.1	2
25	Finite Element Modelling of Combined Process of Plate Rolling and Stamping. MATEC Web of Conferences, 2016, 80, 15008.	0.1	2
26	Heat transfer modeling in asymmetrical sheet rolling of aluminium alloys with ultra high shear strain. MATEC Web of Conferences, 2016, 80, 04005.	0.1	2
27	Finite Element Simulation of Shear Strain during High-Ratio Differential Speed Rolling of Aluminum Alloy 5083. Key Engineering Materials, 0, 716, 700-707.	0.4	2
28	Finite Element Modeling of Influence of Roll Form of Vertical Scale Breaker on Decreased Formation of Surface Defects during Roughing Hot Rolling. Key Engineering Materials, 0, 685, 181-185.	0.4	2
29	FE Analysis of the Applicability of the Shear-Compression Testing to the Modeling of the Asymmetric Rolling Process. Materials Science Forum, 2016, 870, 226-233.	0.3	2
30	Behavior of Micro-Alloyed Steel at Thermal Treatment. Solid State Phenomena, 0, 265, 177-180.	0.3	2
31	Interface shear strain of 1050/6061 laminated composite processed by asymmetric accumulative roll bonding. AIP Conference Proceedings, 2019, , .	0.3	2
32	Numerical Modelling and Development of New Technical Solutions in Metallurgy and Material Processing. Solid State Phenomena, 0, 304, 113-119.	0.3	2
33	FEM simulation of fabrication of Al-steel layered composites with mechanical bonding through the interfacial concavo-convex lock effect. Procedia Manufacturing, 2020, 50, 579-583.	1.9	2
34	Computer Simulation of Micro-Mechanic in Pearlitic Steel Wire Drawing. Materials Science Forum, 0, 989, 684-690.	0.3	2
35	A Comparative Investigation of Conventional and Hammering-Assisted Incremental Sheet Forming Processes for AA1050 H14 Sheets. Metals, 2021, 11, 1862.	1.0	2
36	Production of >16-mm strip after reconstruction of the 2000 mill. Steel in Translation, 2009, 39, 915-917.	0.1	1

DENIS PUSTOVOYTOV

#	Article	IF	CITATIONS
37	Finite Element Simulation of Heat Transfer during Cryogenic Asymmetric Sheet Rolling of Aluminum Alloys. Key Engineering Materials, 2016, 716, 692-699.	0.4	1
38	Development of the Technology of Various Large Bodies Manufacturing Based on Combined Methods of Deformation. Key Engineering Materials, 2016, 716, 659-666.	0.4	1
39	FE Simulation of the Stress-Strain State during Shear-Compression Testing and Asymmetric Three-Roll Rolling Process. MATEC Web of Conferences, 2017, 95, 12009.	0.1	1
40	Development of a multi-cycle shear-compression testing for the modeling of severe plastic deformation. IOP Conference Series: Materials Science and Engineering, 2017, 293, 012008.	0.3	1
41	Novel technique for physical simulation of asymmetric rolling. Procedia Manufacturing, 2018, 15, 137-143.	1.9	1
42	Effect of Rolling Temperature and Subsequence Ageing on the Mechanical Properties and Microstructure Evolution of an Al-Cu-Li Alloy. Metals, 2021, 11, 853.	1.0	1
43	Efficient deformation in the roughing group of the 2000 mill. Steel in Translation, 2009, 39, 912-914.	0.1	0
44	Finite Element Modeling of Strain Distribution through Sheet Thickness during Cold Rolling with Grooved Rolls. MATEC Web of Conferences, 2015, 26, 03009.	0.1	0
45	Modification of the Shear-Compression Specimen and Development of a Special Technique for the Physical Simulation of Asymmetric Rolling with a Large Strain. Defect and Diffusion Forum, 2018, 385, 461-467.	0.4	0
46	FEM simulation of strain gradients induced in metal sheets by special rolling techniques. AIP Conference Proceedings, 2019, , .	0.3	0
47	FEM simulation of strain distribution through thickness of multilayered metal composite processed by asymmetric accumulative roll bonding. , 2019, , .		О