Carmen GonzÃ;lez-Barreiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7417938/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on the use of cyclodextrins in foods. Food Hydrocolloids, 2009, 23, 1631-1640.	5.6	767
2	Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environmental Pollution, 2007, 148, 570-579.	3.7	544
3	Determination of selected organophosphate esters in the aquatic environment of Austria. Science of the Total Environment, 2007, 388, 290-299.	3.9	260
4	Wine Aroma Compounds in Grapes: A Critical Review. Critical Reviews in Food Science and Nutrition, 2015, 55, 202-218.	5.4	251
5	A Review on the Fate of Pesticides during the Processes within the Food-Production Chain. Critical Reviews in Food Science and Nutrition, 2011, 51, 99-114.	5.4	152
6	Determination of selected quaternary ammonium compounds by liquid chromatography with mass spectrometry. Part I. Application to surface, waste and indirect discharge water samples in Austria. Environmental Pollution, 2007, 145, 489-496.	3.7	143
7	Occurrence of polycyclic aromatic hydrocarbons and their hydroxylated metabolites in infant foods. Food Chemistry, 2009, 115, 814-819.	4.2	135
8	Changes in antioxidant flavonoids during freeze-drying of red onions and subsequent storage. Food Control, 2011, 22, 1108-1113.	2.8	120
9	Determination of selected quaternary ammonium compounds by liquid chromatography with mass spectrometry. Part II. Application to sediment and sludge samples in Austria. Environmental Pollution, 2007, 146, 543-547.	3.7	118
10	Relationships between Godello white wine sensory properties and its aromatic fingerprinting obtained by GC–MS. Food Chemistry, 2011, 129, 890-898.	4.2	111
11	Evolution of the aromatic profile in Garnacha Tintorera grapes during raisining and comparison with that of the naturally sweet wine obtained. Food Chemistry, 2013, 139, 1052-1061.	4.2	102
12	Quantitative determination and characterisation of the main odourants of MencÃa monovarietal red wines. Food Chemistry, 2009, 117, 473-484.	4.2	96
13	Method optimization for determination of selected perfluorinated alkylated substances in water samples. Analytical and Bioanalytical Chemistry, 2006, 386, 2123-2132.	1.9	91
14	State of the Art on Functional Virgin Olive Oils Enriched with Bioactive Compounds and Their Properties. International Journal of Molecular Sciences, 2017, 18, 668.	1.8	79
15	Surveillance of fungicidal dithiocarbamate residues in fruits and vegetables. Food Chemistry, 2012, 134, 366-374.	4.2	78
16	Aroma profile of Garnacha Tintorera-based sweet wines by chromatographic and sensorial analyses. Food Chemistry, 2012, 134, 2313-2325.	4.2	77
17	Bioaccessibility and potential bioavailability of phenolic compounds from achenes as a new target for strawberry breeding programs. Food Chemistry, 2018, 248, 155-165.	4.2	76
18	Dynamic headspace/GC–MS to control the aroma fingerprint of extra-virgin olive oil from the same and different olive varieties. Food Control, 2012, 25, 684-695.	2.8	75

#	Article	IF	CITATIONS
19	Application of new fungicides under good agricultural practices and their effects on the volatile profile of white wines. Food Research International, 2011, 44, 397-403.	2.9	71
20	Influence of tebuconazole residues on the aroma composition of MencÃa red wines. Food Chemistry, 2011, 124, 1525-1532.	4.2	66
21	Ultrasound-assisted emulsification–microextraction for the determination of phenolic compounds in olive oils. Food Chemistry, 2014, 150, 128-136.	4.2	64
22	Aroma potential of Brancellao grapes from different cluster positions. Food Chemistry, 2012, 132, 112-124.	4.2	60
23	Improvements in the malaxation process to enhance the aroma quality of extra virgin olive oils. Food Chemistry, 2014, 158, 534-545.	4.2	57
24	Effects of Sugar Concentration Processes in Grapes and Wine Aging on Aroma Compounds of Sweet Wines—A Review. Critical Reviews in Food Science and Nutrition, 2015, 55, 1053-1073.	5.4	53
25	Impact of phytosanitary treatments with fungicides (cyazofamid, famoxadone, mandipropamid and) Tj ETQq1 1 (0.784314 4.2	rgBT /Over o
26	Comparison of sanitizing technologies on the quality appearance and antioxidant levels in onion slices. Food Control, 2011, 22, 2052-2058.	2.8	50
27	Simultaneous determination of neutral and acidic pharmaceuticals in wastewater by high-performance liquid chromatography–post-column photochemically induced fluorimetry. Journal of Chromatography A, 2003, 993, 29-37.	1.8	49
28	Influence of new generation fungicides on Saccharomyces cerevisiae growth, grape must fermentation and aroma biosynthesis. Food Chemistry, 2014, 146, 234-241.	4.2	39
29	Quality of extra virgin olive oils produced in an emerging olive growing area in north-western Spain. Food Chemistry, 2014, 164, 418-426.	4.2	39
30	Characterisation of extra virgin olive oils from Galician autochthonous varieties and their co-crushings with Arbequina and Picual cv Food Chemistry, 2015, 176, 493-503.	4.2	39
31	Characterization of phenolic extracts from Brava extra virgin olive oils and their cytotoxic effects on MCF-7 breast cancer cells. Food and Chemical Toxicology, 2018, 119, 73-85.	1.8	38
32	Multi-objective optimisation using evolutionary algorithms: its application to HPLC separations. Chemometrics and Intelligent Laboratory Systems, 2003, 69, 137-156.	1.8	37
33	Changes of the sensorial attributes of white wines with the application of new anti-mildew fungicides under critical agricultural practices. Food Chemistry, 2012, 130, 139-146.	4.2	37
34	Concentrations of Aroma Compounds and Odor Activity Values of Odorant Series in Different Olive Cultivars and Their Oils. Journal of Agricultural and Food Chemistry, 2013, 61, 5252-5259.	2.4	36
35	Evaluation of the neuroprotective and antidiabetic potential of phenol-rich extracts from virgin olive oils by in vitro assays. Food Research International, 2018, 106, 558-567.	2.9	35
36	Optimisation of alachlor solid-phase microextraction from water samples using experimental design. Journal of Chromatography A, 2000, 896, 373-379.	1.8	34

#	Article	IF	CITATIONS
37	Photolysis of polychlorinated biphenyls by solid-phase microextraction. Journal of Chromatography A, 2002, 963, 37-47.	1.8	34
38	Effects of Sedimentation Plus Racking Process in the Extra Virgin Olive Oil Aroma Fingerprint Obtained by DHS–TD/GC–MS. Food and Bioprocess Technology, 2013, 6, 1290-1301.	2.6	34
39	On-fibre photodegradation studies of polychlorinated biphenyls using SPME–GC–MS–MS: a new approach. Chemosphere, 2002, 47, 607-615.	4.2	33
40	Floral, spicy and herbaceous active odorants in Gran Negro grapes from shoulders and tips into the cluster, and comparison with Brancellao and Mouratón varieties. Food Chemistry, 2012, 135, 2771-2782.	4.2	33
41	Characterization of virgin olive oils produced with autochthonous Galician varieties. Food Chemistry, 2016, 212, 162-171.	4.2	33
42	Aroma biogenesis and distribution between olive pulps and seeds with identification of aroma trends among cultivars. Food Chemistry, 2013, 141, 637-643.	4.2	29
43	Sensory Quality Control of Young vs. Aged Sweet Wines Obtained by the Techniques of Both Postharvest Natural Grape Dehydration and Fortification with Spirits During Vinification. Food Analytical Methods, 2013, 6, 289-300.	1.3	26
44	The involvement of phenolic-rich extracts from Galician autochthonous extra-virgin olive oils against the α-glucosidase and α-amylase inhibition. Food Research International, 2019, 116, 447-454.	2.9	26
45	Occurrence of soluble organic compounds in thermal waters by ion trap mass detection. Chemosphere, 2009, 75, 34-47.	4.2	25
46	Evaluation of the effect of fenhexamid and mepanipyrim in the volatile composition of Tempranillo and Graciano wines. Food Research International, 2015, 71, 108-117.	2.9	24
47	Effect of pistachio kernel extracts in MCF-7 breast cancer cells: Inhibition of cell proliferation, induction of ROS production, modulation of glycolysis and of mitochondrial respiration. Journal of Functional Foods, 2018, 45, 155-164.	1.6	24
48	The use of manures for detection and quantification of polycyclic aromatic hydrocarbons and 3-hydroxybenzo[a]pyrene in animal husbandry. Science of the Total Environment, 2008, 406, 279-286.	3.9	22
49	Active odorants in MouratÃ ³ n grapes from shoulders and tips into the bunch. Food Chemistry, 2012, 133, 1362-1372.	4.2	22
50	Genotypic and phenotypic identification of olive cultivars from north-western Spain and characterization of their extra virgin olive oils in terms of fatty acid composition and minor compounds. Scientia Horticulturae, 2018, 232, 269-279.	1.7	22
51	Distribution of polychlorinated biphenyls in both products and by-products of a mussel shell incinerator facility. Environmental Science and Pollution Research, 2011, 18, 1139-1146.	2.7	21
52	Dissipation of Fungicide Residues during Winemaking and Their Effects on Fermentation and the Volatile Composition of Wines. Journal of Agricultural and Food Chemistry, 2016, 64, 1344-1354.	2.4	21
53	Assessment of polar phenolic compounds of virgin olive oil by NIR and midâ€IR spectroscopy and their impact on quality. European Journal of Lipid Science and Technology, 2017, 119, 1600099.	1.0	21
54	Photochemical studies of a polybrominated diphenyl ethers (PBDES) technical mixture by solid phase microextraction (SPME). Chemosphere, 2005, 60, 922-928.	4.2	20

#	Article	IF	CITATIONS
55	Effect on the Aroma Profile of Graciano and Tempranillo Red Wines of the Application of Two Antifungal Treatments onto Vines. Molecules, 2014, 19, 12173-12193.	1.7	20
56	Influence of new fungicides – metiram and pyraclostrobin – on <i>Saccharomyces cerevisiae</i> yeast growth and alcoholic fermentation course for wine production Influencia de los nuevos fungicidas – metiram y piraclostrobÃn – en el crecimiento de la levadura <i>Saccharomyces cerevisiae</i> y en el curso de la fermentación alcohólica para la elaboración de vino. CYTA - Journal of Food, 2011, 9,	0.9	19
57	S29-334. Nutraceutical Potential of Phenolics from â€ ² Bravaâ€ ² and â€ ² Mansaâ€ ² Extra-Virgin Olive Oils on the Inhibition of Enzymes Associated to Neurodegenerative Disorders in Comparison with Those of â€ ² Picualâ€ ² and â€ ² Cornicabraâ€ ² . Molecules, 2018, 23, 722.	1.7	18
58	Impact of mepanipyrim and tetraconazole in MencÃa wines on the biosynthesis of volatile compounds during the winemaking process. Food Chemistry, 2019, 300, 125223.	4.2	18
59	Study of the volatile compounds produced by Debaryomyces hansenii NRRL Y-7426 during the fermentation of detoxified concentrated distilled grape marc hemicellulosic hydrolysates. World Journal of Microbiology and Biotechnology, 2012, 28, 3123-3134.	1.7	15
60	Sensory description of sweet wines obtained by the winemaking procedures of raisining, botrytisation and fortification. Food Chemistry, 2014, 145, 1021-1030.	4.2	15
61	Applicability of an In-Vitro Digestion Model to Assess the Bioaccessibility of Phenolic Compounds from Olive-Related Products. Molecules, 2021, 26, 6667.	1.7	14
62	Tetraconazole alters the methionine and ergosterol biosynthesis pathways in Saccharomyces yeasts promoting changes on volatile derived compounds. Food Research International, 2020, 130, 108930.	2.9	12
63	Blending <i>Local</i> olive oils with Arbequina or Picual oils produces high quality, distinctive EVOOs. European Journal of Lipid Science and Technology, 2015, 117, 1238-1247.	1.0	11
64	Impact of fungicides mepanipyrim and tetraconazole on phenolic profile and colour of MencÃa red wines. Food Control, 2019, 98, 412-423.	2.8	11
65	Mepanipyrim residues on pasteurized red must influence the volatile derived compounds from Saccharomyces cerevisiae metabolism. Food Research International, 2019, 126, 108566.	2.9	10
66	Metabolomics Insights of the Immunomodulatory Activities of Phlorizin and Phloretin on Human THP-1 Macrophages. Molecules, 2021, 26, 787.	1.7	8
67	Singular Olive Oils from a Recently Discovered Spanish North-Western Cultivar: An Exhaustive 3-Year Study of Their Chemical Composition and In-Vitro Antidiabetic Potential. Antioxidants, 2022, 11, 1233.	2.2	3