Maria Teresa Ochoa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/741788/publications.pdf

Version: 2024-02-01

55 papers 8,457 citations

31 h-index

147801

50 g-index

56 all docs

56
docs citations

56 times ranked 9882 citing authors

#	Article	IF	CITATIONS
1	Toll-Like Receptor Triggering of a Vitamin D-Mediated Human Antimicrobial Response. Science, 2006, 311, 1770-1773.	12.6	3,367
2	Induction of Direct Antimicrobial Activity Through Mammalian Toll-Like Receptors. Science, 2001, 291, 1544-1547.	12.6	623
3	Activation of Toll-Like Receptor 2 in Acne Triggers Inflammatory Cytokine Responses. Journal of Immunology, 2002, 169, 1535-1541.	0.8	557
4	TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nature Medicine, 2005, 11, 653-660.	30.7	361
5	Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nature Medicine, 2003, 9, 525-532.	30.7	311
6	Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. Journal of Clinical Investigation, 2004, 113, 701-708.	8.2	231
7	Activation of Toll-Like Receptor 2 on Human Dendritic Cells Triggers Induction of IL-12, But Not IL-10. Journal of Immunology, 2000, 165, 3804-3810.	0.8	214
8	Macrophages Acquire Neutrophil Granules for Antimicrobial Activity against Intracellular Pathogens. Journal of Immunology, 2006, 177, 1864-1871.	0.8	209
9	Dendritic Cell Vaccination Combined with CTLA4 Blockade in Patients with Metastatic Melanoma. Clinical Cancer Research, 2009, 15, 6267-6276.	7.0	191
10	Divergence of Macrophage Phagocytic and Antimicrobial Programs in Leprosy. Cell Host and Microbe, 2009, 6, 343-353.	11.0	175
11	T-cell release of granulysin contributes to host defense in leprosy. Nature Medicine, 2001, 7, 174-179.	30.7	171
12	Expression of Toll-Like Receptor 2 on Human Schwann Cells: a Mechanism of Nerve Damage in Leprosy. Infection and Immunity, 2003, 71, 1427-1433.	2.2	154
13	Use of Genetic Profiling in Leprosy to Discriminate Clinical Forms of the Disease. Science, 2003, 301, 1527-1530.	12.6	151
14	Host-derived oxidized phospholipids and HDL regulate innate immunity in human leprosy. Journal of Clinical Investigation, 2008, 118, 2917-2928.	8.2	146
15	Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. Journal of Clinical Investigation, 2004, 113, 701-708.	8.2	127
16	NOD2 triggers an interleukin-32–dependent human dendritic cell program in leprosy. Nature Medicine, 2012, 18, 555-563.	30.7	118
17	"Dermal Dendritic Cells―Comprise Two Distinct Populations: CD1+ Dendritic Cells and CD209+ Macrophages. Journal of Investigative Dermatology, 2008, 128, 2225-2231.	0.7	114
18	Treatment failure in children in a randomized clinical trial with 10 and 20 days of meglumine antimonate for cutaneous leishmaniasis due to Leishmania viannia species American Journal of Tropical Medicine and Hygiene, 2001, 64, 187-193.	1.4	114

#	Article	IF	CITATIONS
19	TLR Activation of Langerhans Cell-Like Dendritic Cells Triggers an Antiviral Immune Response. Journal of Immunology, 2006, 177, 298-305.	0.8	112
20	Recognizing and managing the immunologic reactionsÂin leprosy. Journal of the American Academy of Dermatology, 2014, 71, 795-803.	1.2	89
21	Changes in Expression of Signal Transduction Proteins in T Lymphocytes of Patients with Leprosy. Infection and Immunity, 1998, 66, 499-504.	2.2	84
22	S100A12 Is Part of the Antimicrobial Network against Mycobacterium leprae in Human Macrophages. PLoS Pathogens, 2016, 12, e1005705.	4.7	77
23	Integrated Pathways for Neutrophil Recruitment and Inflammation in Leprosy. Journal of Infectious Diseases, 2010, 201, 558-569.	4.0	65
24	Human immunodeficiency virus and leishmaniasis. Journal of Global Infectious Diseases, 2010, 2, 248.	0.5	60
25	The cellular architecture of the antimicrobial response network in human leprosy granulomas. Nature Immunology, 2021, 22, 839-850.	14.5	60
26	Human antimicrobial cytotoxic T lymphocytes, defined by NK receptors and antimicrobial proteins, kill intracellular bacteria. Science Immunology, 2018, 3, .	11.9	59
27	Human Dendritic Cell Expression of HLA-DO Is Subset Specific and Regulated by Maturation. Journal of Immunology, 2006, 176, 3536-3547.	0.8	49
28	Antigen-Presenting Cell Candidates for HIV-1 Transmission in Human Distal Colonic Mucosa Defined by CD207 Dendritic Cells and CD209 Macrophages. AIDS Research and Human Retroviruses, 2014, 30, 241-249.	1.1	44
29	IL-26 contributes to host defense against intracellular bacteria. Journal of Clinical Investigation, 2019, 129, 1926-1939.	8.2	42
30	LILRA2 Activation Inhibits Dendritic Cell Differentiation and Antigen Presentation to T Cells. Journal of Immunology, 2007, 179, 8128-8136.	0.8	41
31	Isolation of <i>Mycobacterium lepromatosis </i> and Development of Molecular Diagnostic Assays to Distinguish <i>Mycobacterium leprae </i> and <i>M. lepromatosis </i> . Clinical Infectious Diseases, 2020, 71, e262-e269.	5.8	37
32	T Lymphocyte Density and Distribution in Human Colorectal Mucosa, and Inefficiency of Current Cell Isolation Protocols. PLoS ONE, 2015, 10, e0122723.	2.5	33
33	Cell-type deconvolution with immune pathways identifies gene networks of host defense and immunopathology in leprosy. JCI Insight, 2016, 1, e88843.	5.0	29
34	Treatment of cutaneous leishmaniasis in Colombia with dapsone. Lancet, The, 1998, 351, 498-499.	13.7	25
35	Interleukin-4 Regulates the Expression of CD209 and Subsequent Uptake of <i>Mycobacterium leprae </i> by Schwann Cells in Human Leprosy. Infection and Immunity, 2010, 78, 4634-4643.	2.2	25
36	IL-27 Suppresses Antimicrobial Activity in Human Leprosy. Journal of Investigative Dermatology, 2015, 135, 2410-2417.	0.7	25

#	Article	IF	CITATIONS
37	Signaling Lymphocytic Activation Molecule Expression and Regulation in Human Intracellular Infection Correlate with Th1 Cytokine Patterns. Journal of Immunology, 2001, 167, 5719-5724.	0.8	23
38	IL- \hat{l}^2 Induces the Rapid Secretion of the Antimicrobial Protein IL-26 from Th17 Cells. Journal of Immunology, 2019, 203, 911-921.	0.8	21
39	Activation of human CD4 ⁺ T cells by targeting MHC class II epitopes to endosomal compartments using human CD1 tail sequences. Immunology, 2007, 122, 522-531.	4.4	18
40	Autophagy links antimicrobial activity with antigen presentation in Langerhans cells. JCI Insight, 2019, 4, .	5.0	17
41	LEPROMATOUS AND TUBERCULOID LEPROSY: CLINICAL PRESENTATION AND CYTOKINE RESPONSES. International Journal of Dermatology, 1996, 35, 786-790.	1.0	16
42	Positive IgG Western Blot for Borrelia burgdorferi in Colombia. Memorias Do Instituto Oswaldo Cruz, 1999, 94, 499-503.	1.6	14
43	A role for interleukinâ€5 in promoting increased immunoglobulin M at the site of disease in leprosy. Immunology, 2010, 131, 405-414.	4.4	14
44	Regulation of human T-cell homing receptor expression in cutaneous bacterial infection. Immunology, 2007, 120, 518-525.	4.4	9
45	New World cutaneous leishmaniasis: Current challenges in diagnosis and parenteral treatment. Journal of the American Academy of Dermatology, 2011, 64, 587-592.	1.2	8
46	The cell fate regulator NUPR1 is induced by Mycobacterium leprae via type I interferon in human leprosy. PLoS Neglected Tropical Diseases, 2019, 13, e0007589.	3.0	7
47	ER Stress Regulates Immunosuppressive Function of Myeloid Derived Suppressor Cells in Leprosy that Can Be Overcome in the Presence of IFN-Î ³ . IScience, 2020, 23, 101050.	4.1	6
48	Functional characterization of a T-cell receptor BV6+T-cell clone derived from a leprosy lesion. Immunology, 2007, 120, 354-361.	4.4	4
49	Characterization and Outcomes of Patients With Hansen Disease Treated at the Los Angeles County Hospital. JAMA Dermatology, 2019, 155, 1190.	4.1	4
50	Diffuse cutaneous leishmaniasis and <scp>HIV</scp> coâ€infection: A case report and review of the literature. Journal of Cutaneous Pathology, 2021, 48, 802-806.	1.3	2
51	HIV-1 ⁺ /HSV-2 ⁺ Co-infection Is Associated with Persistence of CD14 ⁺ and DC-SIGN ⁺ Antigen Presenting Cells at the Mucosa Independent of HSV Recurrences. AIDS Research and Human Retroviruses, 2014, 30, A281-A281.	1.1	0
52	Endosomal Targeting Sequences from Non-Classical Antigen Presenting Molecules Can Direct Antigens into the MIIC and Other Antigen Processing Compartments Blood, 2004, 104, 1357-1357.	1.4	0
53	Hansen's Disease: differences in clinical presentation among Latin American and South East Asian born patients identified in Los Angeles County, California (1995–2016). Leprosy Review, 2020, 91, 244-254.	0.3	0
54	What Neglected Tropical Diseases Teach Us About Stigma. Cutis, 2019, 104, 202-203.	0.3	0

#	Article	lF	CITATIONS
55	Editorial: Strategies Played by Immune Cells and Mycobacteria in the Battle Between Antimicrobial Activity and Bacterial Survival. Frontiers in Immunology, 2022, 13, 869692.	4.8	0