Katrin Hurle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7417531/publications.pdf Version: 2024-02-01

KATDIN HUDIF

#	Article	lF	CITATIONS
1	Mapping the elemental and crystalline phase distribution in Cu ²⁺ doped 45S5 bioactive glass upon crystallization. CrystEngComm, 2022, 24, 284-293.	1.3	1
2	Progressive changes in crystallographic textures of biominerals generate functionally graded ceramics. Materials Advances, 2022, 3, 1527-1538.	2.6	4
3	Scavenging of bacteria or bacterial products by magnetic particles functionalized with a broad-spectrum pathogen recognition receptor motif offers diagnostic and therapeutic applications. Acta Biomaterialia, 2022, 141, 418-428.	4.1	11
4	Grasping the Lithium hype: Insights into modern dental Lithium Silicate glass-ceramics. Dental Materials, 2022, 38, 318-332.	1.6	54
5	Pyrophosphate ions inhibit calcium phosphate cement reaction and enable storage of premixed pastes with a controlled activation by orthophosphate addition. Ceramics International, 2022, 48, 15390-15404.	2.3	4
6	Crystallization study of sol–gel derived 13-93 bioactive glass powder. Journal of the European Ceramic Society, 2021, 41, 1695-1706.	2.8	17
7	Concurrent kinetics of crystallization and toughening in multicomponent biomedical SiO2-Li2O-P2O5-ZrO2 glass-ceramics. Journal of Non-Crystalline Solids, 2021, 554, 120607.	1.5	20
8	Ion-doped Brushite Cements for Bone Regeneration. Acta Biomaterialia, 2021, 123, 51-71.	4.1	58
9	Relationships between fracture toughness, Y2O3 fraction and phases content in modern dental Yttria-doped zirconias. Journal of the European Ceramic Society, 2021, 41, 7771-7782.	2.8	19
10	Deepening our understanding of bioactive glass crystallization using TEM and 3D nano-CT. Journal of the European Ceramic Society, 2021, 41, 4958-4969.	2.8	15
11	Toughening by revitrification of Li2SiO3 crystals in Obsidian® dental glass-ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 124, 104739.	1.5	8
12	Shape Matters: Crystal Morphology and Surface Topography Alter Bioactivity of Bioceramics in Simulated Body Fluid. Advanced Engineering Materials, 2020, 22, 2000044.	1.6	3
13	Crack growth rates in lithium disilicates with bulk (mis)alignment of the Li2Si2O5 phase in the [001] direction. Journal of Non-Crystalline Solids, 2020, 532, 119877.	1.5	11
14	Cu2+ doped Î ² -tricalcium phosphate: Solid solution limit and crystallographic characterization by rietveld refinement. Journal of Solid State Chemistry, 2020, 285, 121225.	1.4	17
15	New insights into the crystallization process of solâ€gel–derived 45S5 bioactive glass. Journal of the American Ceramic Society, 2020, 103, 4234-4247.	1.9	28
16	Setting Mechanism of a CDHA Forming $\hat{I}\pm$ -TCP Cement Modified with Sodium Phytate for Improved Injectability. Materials, 2019, 12, 2098.	1.3	11
17	Effect of sintering parameters on phase evolution and strength of dental lithium silicate glass-ceramics. Dental Materials, 2019, 35, 1360-1369.	1.6	14
18	Phase-specific bioactivity and altered Ostwald ripening pathways of calcium carbonate polymorphs in simulated body fluid. RSC Advances, 2019, 9, 18232-18244.	1.7	44

KATRIN HURLE

#	Article	IF	CITATIONS
19	Crack-healing during two-stage crystallization of biomedical lithium (di)silicate glass-ceramics. Dental Materials, 2019, 35, 1130-1145.	1.6	43
20	Mechanical improvement of calcium carbonate cements by <i>in situ</i> HEMA polymerization during hardening. Journal of Materials Chemistry B, 2019, 7, 3403-3411.	2.9	22
21	Phase characterization of lithium silicate biomedical glass-ceramics produced by two-stage crystallization. Journal of Non-Crystalline Solids, 2019, 510, 42-50.	1.5	27
22	Mechanical activation and cement formation of trimagnesium phosphate. Journal of the American Ceramic Society, 2018, 101, 1830-1834.	1.9	10
23	Hydration mechanism of a calcium phosphate cement modified with phytic acid. Acta Biomaterialia, 2018, 80, 378-389.	4.1	26
24	Hydration mechanism of partially amorphized β-tricalcium phosphate. Acta Biomaterialia, 2017, 54, 429-440.	4.1	7
25	Hydration enthalpy of amorphous tricalcium phosphate resulting from partially amorphization of \hat{I}^2 -tricalcium phosphate. BioNanoMaterials, 2017, 18, .	1.4	3
26	Influence of Sr ²⁺ on Calciumâ€Deficient Hydroxyapatite Formation Kinetics and Morphology in Partially Amorphized αâ€TCP. Journal of the American Ceramic Society, 2016, 99, 1055-1063.	1.9	9
27	Reaction kinetics of dual setting α-tricalcium phosphate cements. Journal of Materials Science: Materials in Medicine, 2016, 27, 1.	1.7	113
28	Calorimetry investigations of milled α- tricalcium phosphate (α- TCP) powders to determine the formation enthalpies of α- TCP and X-ray amorphous tricalcium phosphate. Acta Biomaterialia, 2015, 23, 338-346.	4.1	14
29	Effect of amorphous phases during the hydraulic conversion of α-TCP into calcium-deficient hydroxyapatite. Acta Biomaterialia, 2014, 10, 3931-3941.	4.1	46