James King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7417274/publications.pdf

Version: 2024-02-01

30	973	19	27
papers	citations	h-index	g-index
32	32	32	884
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Drag coefficient and plant form response to wind speed in three plant species: Burning Bush (Euonymus alatus), Colorado Blue Spruce (Picea pungensglauca.), and Fountain Grass (Pennisetum) Tj $\rm ETQq1~1$	0.784314	rg₿Ф\$Overlog
2	Shear stress partitioning in large patches of roughness in the atmospheric inertial sublayer. Boundary-Layer Meteorology, 2007, 122, 367-396.	2.3	87
3	Representation of vegetation and other nonerodible elements in aeolian shear stress partitioning models for predicting transport threshold. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	82
4	Aeolian shear stress ratio measurements within mesquite-dominated landscapes of the Chihuahuan Desert, New Mexico, USA. Geomorphology, 2006, 82, 229-244.	2.6	77
5	Dust emission variability at the Salton Sea, California, USA. Aeolian Research, 2011, 3, 67-79.	2.7	69
6	Aeolian sediment transport through large patches of roughness in the atmospheric inertial sublayer. Journal of Geophysical Research, 2006, 111 , .	3.3	62
7	Effects of Salt Mineralogy on Dust Emissions, Salton Sea, California. Soil Science Society of America Journal, 2011, 75, 1971-1985.	2.2	56
8	Estimating aerodynamic roughness over complex surface terrain. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,948.	3.3	51
9	Relationships between soil moisture and dust emissions in a bare sandy soil of Mongolia. Particuology, 2016, 28, 131-137.	3.6	41
10	Testing the performance of state-of-the-art dust emission schemes using DO4Models field data. Geoscientific Model Development, 2015, 8, 341-362.	3.6	34
11	Effect of Soil Type and Momentum on Unpaved Road Particulate Matter Emissions from Wheeled and Tracked Vehicles. Aerosol Science and Technology, 2010, 44, 187-196.	3.1	32
12	The dynamism of salt crust patterns on playas. Geology, 2015, 43, 31-34.	4.4	31
13	Detecting surface moisture in aeolian environments using terrestrial laser scanning. Aeolian Research, 2014, 12, 9-17.	2.7	30
14	Accounting for surface roughness on measurements conducted with PI-SWERL: Evaluation of a subjective visual approach and a photogrammetric technique. Aeolian Research, 2014, 13, 35-50.	2.7	29
15	Climate–surface–poreâ€water interactions on a salt crusted playa: implications for crust pattern and surface roughness development measured using terrestrial laser scanning. Earth Surface Processes and Landforms, 2016, 41, 738-753.	2.5	24
16	In situ observations of soil minerals and organic matter in the early phases of prescribed fires. Journal of Geophysical Research, 2012, 117 , .	3.3	22
17	Soil humic-like organic compounds in prescribed fire emissions using nuclear magnetic resonance spectroscopy. Environmental Pollution, 2013, 181, 167-171.	7. 5	22
18	Investigations of the lawâ€ofâ€theâ€wall over sparse roughness elements. Journal of Geophysical Research, 2008, 113, .	3.3	21

#	Article	IF	CITATIONS
19	Analysis of an optical gate device for measuring aeolian sand movement. Aeolian Research, 2017, 24, 65-79.	2.7	20
20	Chemical and microphysical properties of wind-blown dust near an actively retreating glacier in Yukon, Canada. Aerosol Science and Technology, 2020, 54, 2-20.	3.1	19
21	Dust emissions created by low-level rotary-winged aircraft flight over desert surfaces. Atmospheric Environment, 2010, 44, 1043-1053.	4.1	17
22	Modeling aeolian sediment transport thresholds on physically rough Martian surfaces: A shear stress partitioning approach. Geomorphology, 2010, 121, 15-21.	2.6	16
23	South African dust contribution to the high southern latitudes and East Antarctica during interglacial stages. Communications Earth & Environment, 2022, 3, .	6.8	8
24	Remote sensing of a high-Arctic, local dust event over Lake Hazen (Ellesmere Island, Nunavut, Canada). Atmospheric Environment, 2021, 246, 118102.	4.1	6
25	lce nucleating properties of airborne dust from an actively retreating glacier in Yukon, Canada. Environmental Science Atmospheres, 2022, 2, 714-726.	2.4	5
26	Trans-Atlantic Connections between North African Dust Flux and Tree Growth in the Florida Keys, United States. Earth Interactions, 2017, 21, 1-22.	1.5	3
27	Correction to "ln situ observations of soil minerals and organic matter in the early phases of prescribed fires― Journal of Geophysical Research, 2012, 117, n/a-n/a.	3.3	1
28	Factors controlling the spatial and temporal variability of dust emissions. Diqiu Huaxue, 2006, 25, 219-220.	0.5	0
29	Impacts of grazing on vegetation dynamics in a sediment transport complex model. Earth Surface Dynamics, 2021, 9, 29-45.	2.4	0
30	Measuring Sediment Transport by Wind. , 2021, , .		0