Ruben Rv Valbuena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7417077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment, 2022, 270, 112845.	11.0	108
2	A Conceptual Model for Detecting Small-Scale Forest Disturbances Based on Ecosystem Morphological Traits. Remote Sensing, 2022, 14, 933.	4.0	4
3	<scp>treetop</scp> : A Shinyâ€based application and R package for extracting forest information from <scp>LiDAR</scp> data for ecologists and conservationists. Methods in Ecology and Evolution, 2022, 13, 1164-1176.	5.2	15
4	Glasgow forest declaration needs new modes of data ownership. Nature Climate Change, 2022, 12, 415-417.	18.8	11
5	Resource availability and disturbance shape maximum tree height across the Amazon. Global Change Biology, 2021, 27, 177-189.	9.5	26
6	Tighten the Bolts and Nuts on GPP Estimations from Sites to the Globe: An Assessment of Remote Sensing Based LUE Models and Supporting Data Fields. Remote Sensing, 2021, 13, 168.	4.0	14
7	Recovery of logged forest fragments in a human-modified tropical landscape during the 2015-16 El Niño. Nature Communications, 2021, 12, 1526.	12.8	31
8	Analysis of Mediterranean Vegetation Fuel Type Changes Using Multitemporal LiDAR. Forests, 2021, 12, 335.	2.1	7
9	Concerns about reported harvests in European forests. Nature, 2021, 592, E15-E17.	27.8	56
10	Determining maximum entropy in 3D remote sensing height distributions and using it to improve aboveground biomass modelling via stratification. Remote Sensing of Environment, 2021, 260, 112464.	11.0	14
11	Beyond trees: Mapping total aboveground biomass density in the Brazilian savanna using high-density UAV-lidar data. Forest Ecology and Management, 2021, 491, 119155.	3.2	24
12	Global Analysis of the Relationship between Reconstructed Solar-Induced Chlorophyll Fluorescence (SIF) and Gross Primary Production (GPP). Remote Sensing, 2021, 13, 2824.	4.0	12
13	Monitoring restored tropical forest diversity and structure through UAV-borne hyperspectral and lidar fusion. Remote Sensing of Environment, 2021, 264, 112582.	11.0	61
14	Impacts of selective logging on Amazon forest canopy structure and biomass with a LiDAR and photogrammetric survey sequence. Forest Ecology and Management, 2021, 500, 119648.	3.2	13
15	Comparison of two parameter recovery methods for the transformation of Pinus sylvestris yield tables into a diameter distribution model. Annals of Forest Science, 2021, 78, 1.	2.0	0
16	Mapping forest structural heterogeneity of tropical montane forest remnants from airborne laser scanning and Landsat time series. Ecological Indicators, 2020, 108, 105739.	6.3	18
17	A new era in forest restoration monitoring. Restoration Ecology, 2020, 28, 8-11.	2.9	37
18	Evaluating tropical forest classification and field sampling stratification from lidar to reduce effort and enable landscape monitoring. Forest Ecology and Management, 2020, 457, 117634.	3.2	13

RUBEN RV VALBUENA

#	Article	IF	CITATIONS
19	Detecting successional changes in tropical forest structure using GatorEye droneâ€borne lidar. Biotropica, 2020, 52, 1155-1167.	1.6	22
20	Co-Evolution of Emerging Multi-Cities: Rates, Patterns and Driving Policies Revealed by Continuous Change Detection and Classification of Landsat Data. Remote Sensing, 2020, 12, 2905.	4.0	15
21	Single-Pass UAV-Borne GatorEye LiDAR Sampling as a Rapid Assessment Method for Surveying Forest Structure. Remote Sensing, 2020, 12, 4111.	4.0	13
22	Individual Tree Attribute Estimation and Uniformity Assessment in Fast-Growing Eucalyptus spp. Forest Plantations Using Lidar and Linear Mixed-Effects Models. Remote Sensing, 2020, 12, 3599.	4.0	21
23	Standardizing Ecosystem Morphological Traits from 3D Information Sources. Trends in Ecology and Evolution, 2020, 35, 656-667.	8.7	72
24	Comparison of Statistical Modelling Approaches for Estimating Tropical Forest Aboveground Biomass Stock and Reporting Their Changes in Low-Intensity Logging Areas Using Multi-Temporal LiDAR Data. Remote Sensing, 2020, 12, 1498.	4.0	24
25	Combined Impact of Sample Size and Modeling Approaches for Predicting Stem Volume in Eucalyptus spp. Forest Plantations Using Field and LiDAR Data. Remote Sensing, 2020, 12, 1438.	4.0	23
26	Automated operational logging plan considering multi-criteria optimization. Computers and Electronics in Agriculture, 2020, 170, 105253.	7.7	8
27	Simulation of overflow thresholds in urban basins: Case study in Tuxtla Gutiérrez, Mexico. River Research and Applications, 2020, 36, 1307-1320.	1.7	3
28	Evaluating observed versus predicted forest biomass: R-squared, index of agreement or maximal information coefficient?. European Journal of Remote Sensing, 2019, 52, 345-358.	3.5	19
29	The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Scientific Data, 2019, 6, 198.	5.3	44
30	Current Trends in Forest Ecological Applications of Three-Dimensional Remote Sensing: Transition from Experimental to Operational Solutions?. Forests, 2019, 10, 891.	2.1	4
31	Persistent effects of fragmentation on tropical rainforest canopy structure after 20Âyr of isolation. Ecological Applications, 2019, 29, e01952.	3.8	45
32	F <scp>orest</scp> G <scp>ap</scp> R: An <scp>r</scp> Package for forest gap analysis from canopy height models. Methods in Ecology and Evolution, 2019, 10, 1347-1356.	5.2	45
33	Optimizing the Remote Detection of Tropical Rainforest Structure with Airborne Lidar: Leaf Area Profile Sensitivity to Pulse Density and Spatial Sampling. Remote Sensing, 2019, 11, 92.	4.0	69
34	Monitoring the structure of forest restoration plantations with a drone-lidar system. International Journal of Applied Earth Observation and Geoinformation, 2019, 79, 192-198.	2.8	81
35	The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration. Forest Ecology and Management, 2019, 438, 34-43.	3.2	70
36	A Simple Approach of Groundwater Quality Analysis, Classification, and Mapping in Peshawar, Pakistan. Environments - MDPI, 2019, 6, 123.	3.3	9

RUBEN RV VALBUENA

#	Article	IF	CITATIONS
37	A simple approach to forest structure classification using airborne laser scanning that can be adopted across bioregions. Forest Ecology and Management, 2019, 433, 111-121.	3.2	22
38	Estimation of forest biomass components using airborne LiDAR and multispectral sensors. IForest, 2019, 12, 207-213.	1.4	13
39	Remote sensing for the Spanish forests in the 21st century: a review of advances, needs, and opportunities. Forest Systems, 2019, 28, eR001.	0.3	34
40	Airborne laser scanning for tree diameter distribution modelling: a comparison of different modelling alternatives in a tropical single-species plantation. Forestry, 2018, 91, 121-131.	2.3	18
41	Most similar neighbor imputation of forest attributes using metrics derived from combined airborne LIDAR and multispectral sensors. International Journal of Digital Earth, 2018, 11, 1205-1218.	3.9	8
42	Usability of citizen science observations together with airborne laser scanning data in determining the habitat preferences of forest birds. Forest Ecology and Management, 2018, 430, 498-508.	3.2	17
43	Valuation of growing stock using multisource CIS data, a stem quality database, and bucking simulation. Canadian Journal of Forest Research, 2018, 48, 888-897.	1.7	7
44	GIS-based DRASTIC model for groundwater vulnerability and pollution risk assessment in the Peshawar District, Pakistan. Arabian Journal of Geosciences, 2018, 11, 1.	1.3	15
45	Remote sensing approach for spatial planning of land management interventions in West African savannas. Journal of Arid Environments, 2017, 140, 29-41.	2.4	14
46	Influence of the resolution of forest cover maps in evaluating fragmentation and connectivity to assess habitat conservation status. Ecological Indicators, 2017, 79, 295-302.	6.3	40
47	A Method for Optimizing Height Threshold When Computing Airborne Laser Scanning Metrics. Photogrammetric Engineering and Remote Sensing, 2017, 83, 343-350.	0.6	20
48	Modeling Mediterranean forest structure using airborne laser scanning data. International Journal of Applied Earth Observation and Geoinformation, 2017, 57, 145-153.	2.8	37
49	Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation. Ecological Modelling, 2017, 366, 15-26.	2.5	38
50	Effects of plot size, stand density, and scan density on the relationship between airborne laser scanning metrics and the Gini coefficient of tree size inequality. Canadian Journal of Forest Research, 2017, 47, 1590-1602.	1.7	13
51	Wood biomass potentials for energy in northern Europe: Forest or plantations?. Biomass and Bioenergy, 2017, 106, 95-103.	5.7	40
52	Key structural features of Boreal forests may be detected directly using L-moments from airborne lidar data. Remote Sensing of Environment, 2017, 194, 437-446.	11.0	47
53	Contrasting fire damage and fire susceptibility between seasonally flooded forest and upland forest in the Central Amazon using portable profiling LiDAR. Remote Sensing of Environment, 2016, 184, 153-160.	11.0	49
54	Fusion of airborne LiDAR and multispectral sensors reveals synergic capabilities in forest structure characterization. GIScience and Remote Sensing, 2016, 53, 723-738.	5.9	30

Ruben Rv Valbuena

#	Article	IF	CITATIONS
55	Remote sensing estimates and measures of uncertainty for forest variables at different aggregation levels. Environmetrics, 2016, 27, 225-238.	1.4	29
56	Classification of multilayered forest development classes from low-density national airborne lidar datasets. Forestry, 2016, 89, 392-401.	2.3	28
57	Gini coefficient predictions from airborne lidar remote sensing display the effect of management intensity on forest structure. Ecological Indicators, 2016, 60, 574-585.	6.3	45
58	Sensitivity of Above-Ground Biomass Estimates to Height-Diameter Modelling in Mixed-Species West African Woodlands. PLoS ONE, 2016, 11, e0158198.	2.5	16
59	Classification of forest development stages from national low-density lidar datasets: a comparison of machine learning methods. Revista De Teledeteccion, 2016, , 15.	0.6	19
60	How to integrate remotely sensed data and biodiversity for ecosystem assessments at landscape scale. Landscape Ecology, 2015, 30, 501-516.	4.2	43
61	Mapping wood production in European forests. Forest Ecology and Management, 2015, 357, 228-238.	3.2	50
62	Forest structure indicators based on tree size inequality and their relationships to airborne laser scanning. Dissertationes Forestales, 2015, 2015, .	0.1	6
63	Integrating Airborne Laser Scanning with Data from Global Navigation Satellite Systems and Optical Sensors. Managing Forest Ecosystems, 2014, , 63-88.	0.9	4
64	Comparison of airborne laser scanning methods for estimating forest structure indicators based on Lorenz curves. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 95, 23-33.	11.1	40
65	Characterizing forest structural types and shelterwood dynamics from Lorenz-based indicators predicted by airborne laser scanning. Canadian Journal of Forest Research, 2013, 43, 1063-1074.	1.7	55
66	Patterns of covariance between airborne laser scanning metrics and Lorenz curve descriptors of tree size inequality. Canadian Journal of Remote Sensing, 2013, 39, S18-S31.	2.4	25
67	Within-Species Benefits of Back-projecting Airborne Laser Scanner and Multispectral Sensors in Monospecific Pinus sylvestris Forests. European Journal of Remote Sensing, 2013, 46, 491-509.	3.5	8
68	Partial Least Squares for Discriminating Variance Components in Global Navigation Satellite Systems Accuracy Obtained Under Scots Pine Canopies. Forest Science, 2012, 58, 139-153.	1.0	19
69	Diversity and equitability ordering profiles applied to study forest structure. Forest Ecology and Management, 2012, 276, 185-195.	3.2	65
70	Influence of Global Navigation Satellite System errors in positioning inventory plots for tree-height distribution studiesThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time Canadian Journal of Forest Research, 2011, 41, 11-23.	1.7	34
71	Comparing airborne laser scanning-imagery fusion methods based on geometric accuracy in forested areas. Remote Sensing of Environment, 2011, 115, 1942-1954.	11.0	35
72	Forest canopy height retrieval using LiDAR data, medium-resolution satellite imagery and kNN estimation in Aberfoyle, Scotland. Forestry, 2010, 83, 195-206.	2.3	45

#	Article	IF	CITATIONS
73	Accuracy and precision of GPS receivers under forest canopies in a mountainous environment. Spanish Journal of Agricultural Research, 2010, 8, 1047.	0.6	71