## Sanne Cottaar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7417032/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Kilometer-scale structure on the core–mantle boundary near Hawaii. Nature Communications, 2022,<br>13, 2787.                                                                                                                                  | 12.8 | 11        |
| 2  | Insights Into Deep Mantle Thermochemical Contributions to African Magmatism From Converted Seismic Phases. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009478.                                                                     | 2.5  | 11        |
| 3  | AFRP20: New <i>P</i> â€Wavespeed Model for the African Mantle Reveals Two Wholeâ€Mantle Plumes<br>Below East Africa and Neoproterozoic Modification of the Tanzania Craton. Geochemistry,<br>Geophysics, Geosystems, 2021, 22, e2020GC009302. | 2.5  | 29        |
| 4  | Global receiver function observations of the X-discontinuity reveal recycled basalt beneath hotspots.<br>Earth and Planetary Science Letters, 2021, 561, 116813.                                                                              | 4.4  | 16        |
| 5  | A high-resolution map of Hawaiian ULVZ morphology from ScS phases. Earth and Planetary Science<br>Letters, 2021, 563, 116885.                                                                                                                 | 4.4  | 17        |
| 6  | The morphology, evolution and seismic visibility of partial melt at the core–mantle boundary:<br>implications for ULVZs. Geophysical Journal International, 2021, 227, 1028-1059.                                                             | 2.4  | 11        |
| 7  | The interior of Mars revealed. Science, 2021, 373, 388-389.                                                                                                                                                                                   | 12.6 | 3         |
| 8  | Geochemical Constraints on the Structure of the Earth's Deep Mantle and the Origin of the LLSVPs.<br>Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009932.                                                                           | 2.5  | 6         |
| 9  | The Transition Zone Beneath West Argentinaâ€Central Chile Using P â€to―S Converted Waves. Journal of<br>Geophysical Research: Solid Earth, 2020, 125, e2020JB019446.                                                                          | 3.4  | 0         |
| 10 | Effects of Heatâ€Producing Elements on the Stability of Deep Mantle Thermochemical Piles.<br>Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008895.                                                                                   | 2.5  | 9         |
| 11 | Receiver function mapping of mantle transition zone discontinuities beneath Alaska using scaled 3-D velocity corrections. Geophysical Journal International, 2019, 219, 1432-1446.                                                            | 2.4  | 18        |
| 12 | X-discontinuity and transition zone structure beneath Hawaii suggests a heterogeneous plume. Earth<br>and Planetary Science Letters, 2019, 527, 115781.                                                                                       | 4.4  | 19        |
| 13 | A Refined Approach to Model Anisotropy in the Lowermost Mantle. IOP Conference Series: Materials<br>Science and Engineering, 2018, 375, 012002.                                                                                               | 0.6  | 3         |
| 14 | Seismically determined elastic parameters for Earth's outer core. Science Advances, 2018, 4, eaar2538.                                                                                                                                        | 10.3 | 60        |
| 15 | Crustal Formation on a Spreading Ridge Above a Mantle Plume: Receiver Function Imaging of the<br>Icelandic Crust. Journal of Geophysical Research: Solid Earth, 2018, 123, 5190-5208.                                                         | 3.4  | 23        |
| 16 | Converted phases from sharp 1000 km depth mid-mantle heterogeneity beneath Western Europe. Earth<br>and Planetary Science Letters, 2017, 459, 196-207.                                                                                        | 4.4  | 48        |
| 17 | Morphology of seismically slow lower-mantle structures. Geophysical Journal International, 2016, 207, 1122-1136.                                                                                                                              | 2.4  | 110       |
| 18 | Largeâ€scale mantle discontinuity topography beneath Europe: Signature of akimotoite in subducting<br>slabs. Journal of Geophysical Research: Solid Earth, 2016, 121, 279-292.                                                                | 3.4  | 40        |

SANNE COTTAAR

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Depressed mantle discontinuities beneath Iceland: Evidence of a garnet controlled 660 km<br>discontinuity?. Earth and Planetary Science Letters, 2016, 433, 159-168.                 | 4.4 | 57        |
| 20 | High-pressure, temperature elasticity of Fe- and Al-bearing MgSiO3: Implications for the Earth's lower mantle. Earth and Planetary Science Letters, 2016, 434, 264-273.              | 4.4 | 32        |
| 21 | Synthetic seismic anisotropy models within a slab impinging on the core–mantle boundary.<br>Geophysical Journal International, 2014, 199, 164-177.                                   | 2.4 | 34        |
| 22 | BurnMan: A lower mantle mineral physics toolkit. Geochemistry, Geophysics, Geosystems, 2014, 15, 1164-1179.                                                                          | 2.5 | 89        |
| 23 | Observations of changing anisotropy across the southern margin of the African LLSVP. Geophysical Journal International, 2013, 195, 1184-1195.                                        | 2.4 | 55        |
| 24 | Convection in the Earth's inner core. Physics of the Earth and Planetary Interiors, 2012, 198-199, 67-78.                                                                            | 1.9 | 32        |
| 25 | An unsually large ULVZ at the base of the mantle near Hawaii. Earth and Planetary Science Letters, 2012, 355-356, 213-222.                                                           | 4.4 | 108       |
| 26 | Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity. Earth and Planetary Science Letters, 2012, 357-358, 68-77. | 4.4 | 270       |
| 27 | Deformation in the lowermost mantle: From polycrystal plasticity to seismic anisotropy. Earth and Planetary Science Letters, 2011, 306, 33-45.                                       | 4.4 | 54        |