Johanna Kuusisto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/741701/publications.pdf

Version: 2024-02-01

20759 6979 29,294 149 60 154 citations h-index g-index papers 156 156 156 35544 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.	13.7	3,823
2	Discovery and refinement of loci associated with lipid levels. Nature Genetics, 2013, 45, 1274-1283.	9.4	2,641
3	Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 2014, 46, 1173-1186.	9.4	1,818
4	Integrative approaches for large-scale transcriptome-wide association studies. Nature Genetics, 2016, 48, 245-252.	9.4	1,618
5	Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nature Genetics, 2018, 50, 1505-1513.	9.4	1,331
6	New genetic loci link adipose and insulin biology to body fat distribution. Nature, 2015, 518, 187-196.	13.7	1,328
7	A Pro12Ala substitution in PPAR $\hat{1}^3$ 2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nature Genetics, 1998, 20, 284-287.	9.4	1,262
8	The genetic architecture of type 2 diabetes. Nature, 2016, 536, 41-47.	13.7	952
9	A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nature Genetics, 2019, 51, 957-972.	9.4	549
10	Rare and low-frequency coding variants alter human adult height. Nature, 2017, 542, 186-190.	13.7	544
11	Insulin resistance and hyperglycaemia in cardiovascular disease development. Nature Reviews Endocrinology, 2014, 10, 293-302.	4.3	501
12	Exome-wide association study of plasma lipids in >300,000 individuals. Nature Genetics, 2017, 49, 1758-1766.	9.4	470
13	NIDDM and Its Metabolic Control Predict Coronary Heart Disease in Elderly Subjects. Diabetes, 1994, 43, 960-967.	0.3	406
14	Association between features of the insulin resistance syndrome and alzheimer's disease independently of apolipoprotein e4 phenotype: cross sectional population based study. BMJ: British Medical Journal, 1997, 315, 1045-1049.	2.4	388
15	Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nature Genetics, 2015, 47, 1415-1425.	9.4	365
16	The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nature Genetics, 2016, 48, 1171-1184.	9.4	362
17	Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nature Genetics, 2018, 50, 559-571.	9.4	356
18	The power of genetic diversity in genome-wide association studies of lipids. Nature, 2021, 600, 675-679.	13.7	353

#	Article	IF	CITATIONS
19	Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis. PLoS Medicine, 2017, 14, e1002383.	3.9	341
20	The trans-ancestral genomic architecture of glycemic traits. Nature Genetics, 2021, 53, 840-860.	9.4	341
21	The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study. PLoS Genetics, 2015, 11, e1005378.	1.5	331
22	Changes in Insulin Sensitivity and Insulin Release in Relation to Glycemia and Glucose Tolerance in 6,414 Finnish Men. Diabetes, 2009, 58, 1212-1221.	0.3	324
23	Impact of Type 2 Diabetes Susceptibility Variants on Quantitative Glycemic Traits Reveals Mechanistic Heterogeneity. Diabetes, 2014, 63, 2158-2171.	0.3	297
24	Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nature Genetics, 2018, 50, 26-41.	9.4	286
25	The metabolic syndrome predicts cardiovascular mortality: a 13-year follow-up study in elderly non-diabetic Finns. European Heart Journal, 2007, 28, 857-864.	1.0	263
26	Insulin Resistance Syndrome Predicts Coronary Heart Disease Events in Elderly Nondiabetic Men. Circulation, 1999, 100, 123-128.	1.6	261
27	Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nature Genetics, 2016, 48, 1151-1161.	9.4	261
28	Hyperglycemia and a Common Variant of <i>GCKR</i> Are Associated With the Levels of Eight Amino Acids in 9,369 Finnish Men. Diabetes, 2012, 61, 1895-1902.	0.3	251
29	Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nature Genetics, 2022, 54, 560-572.	9.4	250
30	Exome sequencing of 20,791Âcases of type 2 diabetes and 24,440Âcontrols. Nature, 2019, 570, 71-76.	13.7	248
31	New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nature Communications, 2016, 7, 10495.	5.8	245
32	Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biology, 2017, 18, 70.	3.8	245
33	Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Scientific Reports, 2017, 7, 46337.	1.6	228
34	Hyperinsulinemic Microalbuminuria. Circulation, 1995, 91, 831-837.	1.6	191
35	Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nature Communications, 2015, 6, 5897.	5.8	173
36	Directional dominance on stature and cognition inÂdiverse human populations. Nature, 2015, 523, 459-462.	13.7	173

#	Article	IF	Citations
37	Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits. Nature Communications, 2017, 8, 14977.	5.8	169
38	A Central Role for GRB10 in Regulation of Islet Function in Man. PLoS Genetics, 2014, 10, e1004235.	1.5	164
39	Genome-wide physical activity interactions in adiposity ― A meta-analysis of 200,452 adults. PLoS Genetics, 2017, 13, e1006528.	1.5	158
40	The Metabolic Syndrome in Men study: a resource for studies of metabolic and cardiovascular diseases. Journal of Lipid Research, 2017, 58, 481-493.	2.0	147
41	Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nature Communications, 2017, 8, 80.	5.8	147
42	Prospective Study of Small LDLs as a Risk Factor for Non–Insulin Dependent Diabetes Mellitus in Elderly Men and Women. Circulation, 1995, 92, 1770-1778.	1.6	142
43	Genetic Regulation of Adipose Gene Expression and Cardio-Metabolic Traits. American Journal of Human Genetics, 2017, 100, 428-443.	2.6	141
44	A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure. American Journal of Human Genetics, 2018, 102, 375-400.	2.6	123
45	Low-grade inflammation and the phenotypic expression of myocardial fibrosis in hypertrophic cardiomyopathy. Heart, 2012, 98, 1007-1013.	1.2	122
46	Lipidome as a predictive tool in progression to type 2 diabetes in Finnish men. Metabolism: Clinical and Experimental, 2018, 78, 1-12.	1.5	117
47	Multi-ancestry genome-wide gene–smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids. Nature Genetics, 2019, 51, 636-648.	9.4	112
48	Structural Immaturity of Human iPSC-Derived Cardiomyocytes: In Silico Investigation of Effects on Function and Disease Modeling. Frontiers in Physiology, 2018, 9, 80.	1.3	110
49	Nine Amino Acids Are Associated With Decreased Insulin Secretion and Elevated Glucose Levels in a 7.4-Year Follow-up Study of 5,181 Finnish Men. Diabetes, 2019, 68, 1353-1358.	0.3	109
50	Cardiac Involvement in Fabry Disease. Journal of the American College of Cardiology, 2021, 77, 922-936.	1.2	109
51	A genomic approach to therapeutic target validation identifies a glucose-lowering <i>GLP1R</i> variant protective for coronary heart disease. Science Translational Medicine, 2016, 8, 341ra76.	5.8	100
52	Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus. PLoS Genetics, 2015, 11, e1004876.	1.5	95
53	Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries. PLoS ONE, 2018, 13, e0198166.	1.1	94
54	Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nature Genetics, 2019, 51, 452-469.	9.4	89

#	Article	IF	Citations
55	Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nature Communications, 2021, 12, 24.	5.8	87
56	Plasma fatty acids as predictors of glycaemia and type 2 diabetes. Diabetologia, 2015, 58, 2533-2544.	2.9	85
57	Plasma Mannose Levels Are Associated with Incident Type 2 Diabetes and Cardiovascular Disease. Cell Metabolism, 2017, 26, 281-283.	7.2	85
58	Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions. American Journal of Epidemiology, 2019, 188, 1033-1054.	1.6	85
59	Associations of autozygosity with a broad range of human phenotypes. Nature Communications, 2019, 10, 4957.	5.8	84
60	Fatty acid metabolism is altered in non-alcoholic steatohepatitis independent of obesity. Metabolism: Clinical and Experimental, 2016, 65, 655-666.	1.5	78
61	The Metabolic Syndrome Predicts Incident Stroke. Stroke, 2008, 39, 1078-1083.	1.0	76
62	New alcohol-related genes suggest shared genetic mechanisms with neuropsychiatric disorders. Nature Human Behaviour, 2019, 3, 950-961.	6.2	75
63	A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape. Nature Communications, 2016, 7, 13357.	5.8	74
64	Mutations in the cardiac myosin-binding protein C gene are the predominant cause of familial hypertrophic cardiomyopathy in eastern Finland. Journal of Molecular Medicine, 2002, 80, 412-422.	1.7	70
65	A Common Functional Regulatory Variant at a Type 2 Diabetes Locus Upregulates ARAP1 Expression in the Pancreatic Beta Cell. American Journal of Human Genetics, 2014, 94, 186-197.	2.6	67
66	Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies <i>BCL2</i> and <i>FAM19A2</i> as Novel Insulin Sensitivity Loci. Diabetes, 2016, 65, 3200-3211.	0.3	67
67	The cardiac \hat{l}^2 -myosin heavy chain gene is not the predominant gene for hypertrophic cardiomyopathy in the Finnish population. Journal of the American College of Cardiology, 1998, 32, 1709-1716.	1.2	64
68	Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nature Communications, 2019, 10, 376.	5.8	64
69	Genome-wide association studies of metabolites in Finnish men identify disease-relevant loci. Nature Communications, 2022, 13, 1644.	5.8	63
70	Ketone body production is differentially altered in steatosis and nonâ€alcoholic steatohepatitis in obese humans. Liver International, 2015, 35, 1853-1861.	1.9	62
71	Epidemiological Evidence for the Association of Hyperglycaemia and Atherosclerotic Vascular Disease in Non-insulin-dependent Diabetes Mellitus. Annals of Medicine, 1996, 28, 415-418.	1.5	60
72	First-Pass MR Imaging in the Assessment of Perfusion Impairment in Patients with Hypertrophic Cardiomyopathy and the Asp175Asn Mutation of the α-Tropomyosin Gene. Radiology, 2003, 226, 129-137.	3.6	60

#	Article	IF	Citations
73	A Type 2 Diabetes–Associated Functional Regulatory Variant in a Pancreatic Islet Enhancer at the <i>ADCY5</i> Locus. Diabetes, 2017, 66, 2521-2530.	0.3	54
74	Differential Associations of Inflammatory Markers With Insulin Sensitivity and Secretion: The Prospective METSIM Study. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3600-3609.	1.8	52
75	Microglia-like Cells Promote Neuronal Functions in Cerebral Organoids. Cells, 2022, 11, 124.	1.8	50
76	Multiple Hepatic Regulatory Variants at the GALNT2 GWAS Locus Associated with High-Density Lipoprotein Cholesterol. American Journal of Human Genetics, 2015, 97, 801-815.	2.6	49
77	Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes. Nature Communications, 2021, 12, 3505.	5.8	49
78	Novel association of TM6SF2 rs58542926 genotype with increased serum tyrosine levels and decreased apoB-100 particles in Finns. Journal of Lipid Research, 2017, 58, 1471-1481.	2.0	49
79	Common, low-frequency, and rare genetic variants associated with lipoprotein subclasses and triglyceride measures in Finnish men from the METSIM study. PLoS Genetics, 2017, 13, e1007079.	1.5	49
80	Genetics of hypertrophic cardiomyopathy in eastern Finland: few founder mutations with benign or intermediary phenotypes. Annals of Medicine, 2004, 36, 23-32.	1.5	48
81	Associations of multiple lipoprotein and apolipoprotein measures with worsening of glycemia and incident type 2 diabetes in 6607 non-diabetic Finnish men. Atherosclerosis, 2015, 240, 272-277.	0.4	47
82	A Low-Frequency Inactivating <i>AKT2</i> Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk. Diabetes, 2017, 66, 2019-2032.	0.3	47
83	A Common Type 2 Diabetes Risk Variant Potentiates Activity of an Evolutionarily Conserved Islet Stretch Enhancer and Increases C2CD4A and C2CD4B Expression. American Journal of Human Genetics, 2018, 102, 620-635.	2.6	47
84	Diabetes Secondary to Treatment with Statins. Current Diabetes Reports, 2017, 17, 10.	1.7	46
85	Adipose Tissue Gene Expression Associations Reveal Hundreds of Candidate Genes for Cardiometabolic Traits. American Journal of Human Genetics, 2019, 105, 773-787.	2.6	45
86	Glucose-Dependent Insulinotropic Polypeptide Stimulates Osteopontin Expression in the Vasculature via Endothelin-1 and CREB. Diabetes, 2016, 65, 239-254.	0.3	41
87	Colocalization of GWAS and eQTL signals at loci with multiple signals identifies additional candidate genes for body fat distribution. Human Molecular Genetics, 2019, 28, 4161-4172.	1.4	41
88	Decreased plasma βâ€amyloid in the Alzheimer's disease <scp><i>APP</i></scp> <scp><<scp>A</scp>673<scp>T</scp> variant carriers. Annals of Neurology, 2017, 82, 128-132.</scp>	2.8	39
89	Simvastatin Impairs Insulin Secretion by Multiple Mechanisms in MIN6 Cells. PLoS ONE, 2015, 10, e0142902.	1.1	39
90	Epigenome-wide association in adipose tissue from the METSIM cohort. Human Molecular Genetics, 2018, 27, 1830-1846.	1.4	38

#	Article	IF	Citations
91	Disentangling the genetics of lean mass. American Journal of Clinical Nutrition, 2019, 109, 276-287.	2.2	38
92	Diastolic dysfunction without left ventricular hypertrophy is an early finding in children with hypertrophic cardiomyopathy–causing mutations in the β-myosin heavy chain, α-tropomyosin, and myosin-binding protein C genes. American Heart Journal, 2006, 151, 725.e1-725.e9.	1.2	37
93	Two founder mutations in the alpha-tropomyosin and the cardiac myosin-binding protein C genes are common causes of hypertrophic cardiomyopathy in the Finnish population. Annals of Medicine, 2013, 45, 85-90.	1.5	37
94	A Partial Loss-of-Function Variant in <i>AKT2</i> Is Associated With Reduced Insulin-Mediated Glucose Uptake in Multiple Insulin-Sensitive Tissues: A Genotype-Based Callback Positron Emission Tomography Study. Diabetes, 2018, 67, 334-342.	0.3	37
95	The influence of insulin resistance on cerebrospinal fluid and plasma biomarkers of Alzheimer's pathology. Alzheimer's Research and Therapy, 2017, 9, 31.	3.0	36
96	Myocardial perfusion, oxidative metabolism, and free fatty acid uptake in patients with hypertrophic cardiomyopathy attributable to the Asp175Asn mutation in the α-tropomyosin gene: A positron emission tomography study. Journal of Nuclear Cardiology, 2007, 14, 354-365.	1.4	35
97	Both Fasting and Glucose-Stimulated Proinsulin Levels Predict Hyperglycemia and Incident Type 2 Diabetes: A Population-Based Study of 9,396 Finnish Men. PLoS ONE, 2015, 10, e0124028.	1.1	34
98	Cine MR Imaging of Myocardial Contractile Impairment in Patients with Hypertrophic Cardiomyopathy Attributable to Asp175Asn Mutation in the \hat{l} ±-Tropomyosin Gene. Radiology, 2005, 236, 815-824.	3.6	32
99	Short adult stature predicts impaired beta-cell function, insulin resistance, glycemia and type 2 diabetes in Finnish men. Journal of Clinical Endocrinology and Metabolism, 2017, 102, jc.2016-2933.	1.8	32
100	Cardiac MRI assessed left ventricular hypertrophy in differentiating hypertensive heart disease from hypertrophic cardiomyopathy attributable to a sarcomeric gene mutation. European Radiology, 2011, 21, 1383-1389.	2.3	31
101	Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Scientific Data, 2017, 4, 170179.	2.4	31
102	A multi-ancestry genome-wide study incorporating gene–smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure. Human Molecular Genetics, 2019, 28, 2615-2633.	1.4	31
103	Update on Type 2 Diabetes as a Cardiovascular Disease Risk Equivalent. Current Cardiology Reports, 2013, 15, 331.	1.3	30
104	Identification of seven novel loci associated with amino acid levels using single-variant and gene-based tests in 8545 Finnish men from the METSIM study. Human Molecular Genetics, 2018, 27, 1664-1674.	1.4	30
105	Two novel mutations in the \hat{l}^2 -myosin heavy chain gene associated with dilated cardiomyopathy. European Journal of Heart Failure, 2004, 6, 861-868.	2.9	29
106	Genetic risk scores in the prediction of plasma glucose, impaired insulin secretion, insulin resistance and incident type 2 diabetes in the METSIM study. Diabetologia, 2017, 60, 1722-1730.	2.9	26
107	Genetic basis and outcome in a nationwide study of Finnish patients with hypertrophic cardiomyopathy. ESC Heart Failure, 2019, 6, 436-445.	1.4	26
108	Deleterious assembly of mutant p.S143P lamin A/C causes ER stress in familial dilated cardiomyopathy. Journal of Cell Science, 2016, 129, 2732-43.	1.2	25

#	Article	IF	Citations
109	Rare coding variants in 35 genes associate with circulating lipid levelsâ€"A multi-ancestry analysis of 170,000 exomes. American Journal of Human Genetics, 2022, 109, 81-96.	2.6	24
110	Geneâ€diet interaction of a common <i>FADS1</i> variant with marine polyunsaturated fatty acids for fatty acid composition in plasma and erythrocytes among men. Molecular Nutrition and Food Research, 2016, 60, 381-389.	1.5	22
111	Association of structural variation with cardiometabolic traits in Finns. American Journal of Human Genetics, 2021, 108, 583-596.	2.6	22
112	The Association of 9 Amino Acids With Cardiovascular Events in Finnish Men in a 12-Year Follow-up Study. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 3448-3454.	1.8	22
113	Cardiomyopathy associated with the Ala143Thr variant of the $\langle i \rangle \hat{l} \pm galactosidase$ A $\langle i \rangle$ gene. Heart, 2020, 106, 609-615.	1.2	21
114	No variants in the cardiac actin gene in Finnish patients with dilated or hypertrophic cardiomyopathy. American Heart Journal, 2002, 143, 11-14.	1.2	20
115	Metabolic Syndrome and Incident End-Stage Peripheral Vascular Disease. Diabetes Care, 2007, 30, 3099-3104.	4.3	19
116	Left ventricular mechanical dispersion is associated with nonsustained ventricular tachycardia in hypertrophic cardiomyopathy. Annals of Medicine, 2016, 48, 417-427.	1.5	19
117	<i>Trans</i> -ancestry Fine Mapping and Molecular Assays Identify Regulatory Variants at the <i>ANGPTL8</i> HDL-C GWAS Locus. G3: Genes, Genomes, Genetics, 2017, 7, 3217-3227.	0.8	19
118	Circulating RNAs as predictive markers for the progression of type 2 diabetes. Journal of Cellular and Molecular Medicine, 2019, 23, 2753-2768.	1.6	19
119	Nationwide prevalence and characteristics of transthyretin amyloid cardiomyopathy in Sweden. Open Heart, 2021, 8, e001755.	0.9	19
120	The Metabolome in Finnish Carriers of the MYBPC3-Q1061X Mutation for Hypertrophic Cardiomyopathy. PLoS ONE, 2015, 10, e0134184.	1.1	18
121	Cardiovascular magnetic resonance of mitral valve length in hypertrophic cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 33.	1.6	16
122	Finnish Diabetes Risk Score Is Associated with Impaired Insulin Secretion and Insulin Sensitivity, Drug-Treated Hypertension and Cardiovascular Disease: A Follow-Up Study of the METSIM Cohort. PLoS ONE, 2016, 11, e0166584.	1.1	16
123	Cardiac adrenergic activity is associated with left ventricular hypertrophy in genetically homogeneous subjects with hypertrophic cardiomyopathy. Journal of Nuclear Medicine, 2003, 44, 487-93.	2.8	16
124	Evaluation of the efficacy and safety of three dosing regimens of agalsidase alfa enzyme replacement therapy in adults with Fabry disease. Drug Design, Development and Therapy, 2015, 9, 3435.	2.0	15
125	Dietary polyunsaturated fatty acids and the Pro12Ala polymorphisms of PPARG regulate serum lipids through divergent pathways: a randomized crossover clinical trial. Genes and Nutrition, 2015, 10, 43.	1.2	15
126	Significance of Plasma Levels of N-Terminal Pro-B-Type Natriuretic Peptide on Left Ventricular Remodeling in Non-Obstructive Hypertrophic Cardiomyopathy Attributable to the Asp175Asn Mutation in the α-Tropomyosin Gene. American Journal of Cardiology, 2008, 101, 1185-1190.	0.7	14

#	Article	IF	CITATIONS
127	Increased Visceral Adipose Tissue as a Potential Risk Factor in Patients with Embolic Stroke of Undetermined Source (ESUS). PLoS ONE, 2015, 10, e0120598.	1.1	14
128	Systems Genetics Approach to Biomarker Discovery: GPNMB and Heart Failure in Mice and Humans. G3: Genes, Genomes, Genetics, 2018, 8, 3499-3506.	0.8	14
129	A new common mutation in the cardiac beta-myosin heavy chain gene in Finnish patients with hypertrophic cardiomyopathy. Annals of Medicine, 2014, 46, 424-429.	1.5	13
130	Machine Learning Reveals Time-Varying Microbial Predictors with Complex Effects on Glucose Regulation. MSystems, 2021, 6, .	1.7	13
131	Subcutaneous adipose tissue splice quantitative trait loci reveal differences in isoform usage associated with cardiometabolic traits. American Journal of Human Genetics, 2022, 109, 66-80.	2.6	13
132	The Cardiac Troponin I Gene Is Not Associated with Hypertrophic Cardiomyopathy in Patients From Eastern Finland. Journal of Molecular and Cellular Cardiology, 1999, 31, 2031-2036.	0.9	12
133	Markers of Tissue-Specific Insulin Resistance Predict the Worsening of Hyperglycemia, Incident Type 2 Diabetes and Cardiovascular Disease. PLoS ONE, 2014, 9, e109772.	1.1	12
134	Prevalence, characteristics, and mortality of patients with transthyretin amyloid cardiomyopathy in the Nordic countries. ESC Heart Failure, 2022, 9, 2528-2537.	1.4	12
135	Regulation of alternative splicing in human obesity loci. Obesity, 2016, 24, 2033-2037.	1.5	11
136	Generation of a human induced pluripotent stem cell line from a patient with a rare A673T variant in amyloid precursor protein gene that reduces the risk for Alzheimer's disease. Stem Cell Research, 2018, 30, 96-99.	0.3	9
137	Genetics of hypertrophic cardiomyopathy: what is the next step?. Heart, 2020, 106, 1291-1292.	1.2	9
138	Fibrosis and wall thickness affect ventricular repolarization dynamics in hypertrophic cardiomyopathy. Annals of Noninvasive Electrocardiology, 2018, 23, e12582.	0.5	7
139	Mitochondrial genome copy number measured by DNA sequencing in human blood is strongly associated with metabolic traits via cell-type composition differences. Human Genomics, 2021, 15, 34.	1.4	7
140	Current perspectives in hypertrophic cardiomyopathy with the focus on patients in the Finnish population: a review. Annals of Medicine, 2016, 48, 496-508.	1.5	6
141	Functional Variant in the GCKR Gene Affects Lactate Levels Differentially in the Fasting State and During Hyperglycemia. Scientific Reports, 2018, 8, 15989.	1.6	5
142	Generation of a human induced pluripotent stem cell line (UEFi003-A) carrying heterozygous A673T variant in amyloid precursor protein associated with a reduced risk of Alzheimer's disease. Stem Cell Research, 2020, 48, 101968.	0.3	5
143	Novel biomarkers associated with incident heart failure in $10 \hat{A} 106$ Finnish men. ESC Heart Failure, 2021, 8, 605-614.	1.4	5
144	Rotation and torsion of the left ventricle with cardiovascular magnetic resonance tagging: comparison of two analysis methods. BMC Medical Imaging, 2020, 20, 73.	1.4	4

#	Article	IF	CITATIONS
145	Healthcare resource use of patients with transthyretin amyloid cardiomyopathy. ESC Heart Failure, 2022, 9, 1636-1642.	1.4	4
146	Novel electrocardiographic features in carriers of hypertrophic cardiomyopathy causing sarcomeric mutations. Journal of Electrocardiology, 2018, 51, 983-989.	0.4	3
147	CMR derived left ventricular septal convexity in carriers of the hypertrophic cardiomyopathy-causing MYBPC3-Q1061X mutation. Scientific Reports, 2019, 9, 5960.	1.6	3
148	Multiparametric platform for profiling lipid trafficking in human leukocytes. Cell Reports Methods, 2022, 2, 100166.	1.4	3
149	Response to Letter by Sheikh. Stroke, 2008, 39, .	1.0	0