Katsuaki Hoshino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7416951/publications.pdf

Version: 2024-02-01

73 papers 27,232 citations

66250 44 h-index 90395 73
g-index

76 all docs 76 docs citations

76 times ranked 25527 citing authors

#	Article	IF	CITATIONS
1	Transcription factor MafB-mediated inhibition of type I interferons in plasmacytoid dendritic cells. International Immunology, 2022, 34, 159-172.	1.8	6
2	Galectin-9 deficiency exacerbates lipopolysaccharide-induced hypothermia and kidney injury. Clinical and Experimental Nephrology, $2021,1.$	0.7	0
3	The mechanism of action of Spi-B in the transcriptional activation of the interferon-α4 gene. Biochemical and Biophysical Research Communications, 2020, 525, 477-482.	1.0	5
4	Cholera toxin B induces interleukin- $1\hat{l}^2$ production from resident peritoneal macrophages through the pyrin inflammasome as well as the NLRP3 inflammasome. International Immunology, 2019, 31, 657-668.	1.8	13
5	Plasma Galectin-9 Concentrations in Normal and Diseased Condition. Cellular Physiology and Biochemistry, 2018, 50, 1856-1868.	1.1	20
6	Heme ameliorates dextran sodium sulfate-induced colitis through providing intestinal macrophages with noninflammatory profiles. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8418-8423.	3.3	38
7	In Vivo Ablation of a Dendritic Cell Subset Expressing the Chemokine Receptor XCR1. Methods in Molecular Biology, 2016, 1423, 247-253.	0.4	3
8	Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis. Scientific Reports, 2016, 6, 23505.	1.6	113
9	Imaging of the cross-presenting dendritic cell subsets in the skin-draining lymph node. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1044-1049.	3.3	125
10	Antigen-specific cytotoxic T lymphocytes target airway CD103+ and CD11b+ dendritic cells to suppress allergic inflammation. Mucosal Immunology, 2016, 9, 229-239.	2.7	15
11	Limitation of immune tolerance–inducing thymic epithelial cell development by Spi-B–mediated negative feedback regulation. Journal of Experimental Medicine, 2014, 211, 2425-2438.	4.2	56
12	Single-Cell Imaging of Caspase-1 Dynamics Reveals an All-or-None Inflammasome Signaling Response. Cell Reports, 2014, 8, 974-982.	2.9	130
13	Enhanced Apoptosis by Disruption of the STAT3-lκB-ζ Signaling Pathway in Epithelial Cells Induces Sjögren's Syndrome-like Autoimmune Disease. Immunity, 2013, 38, 450-460.	6.6	147
14	Critical Roles of a Dendritic Cell Subset Expressing a Chemokine Receptor, XCR1. Journal of Immunology, 2013, 190, 6071-6082.	0.4	142
15	Invariant NKT Cells Induce Plasmacytoid Dendritic Cell (DC) Cross-Talk with Conventional DCs for Efficient Memory CD8+ T Cell Induction. Journal of Immunology, 2013, 190, 5609-5619.	0.4	43
16	Spi-B is critical for plasmacytoid dendritic cell function and development. Blood, 2012, 120, 4733-4743.	0.6	85
17	The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells. Nature Immunology, 2012, 13, 729-736.	7.0	196
18	Statins, inhibitors of 3â€hydroxyâ€3â€methylglutarylâ€coenzyme A reductase, function as inhibitors of cellular and molecular components involved in type I interferon production. Arthritis and Rheumatism, 2010, 62, 2073-2085.	6.7	37

#	Article	IF	CITATIONS
19	Cutting Edge: Critical Role of lκB Kinase α in TLR7/9-Induced Type I IFN Production by Conventional Dendritic Cells. Journal of Immunology, 2010, 184, 3341-3345.	0.4	34
20	Selective control of type I IFN induction by the Rac activator DOCK2 during TLR-mediated plasmacytoid dendritic cell activation. Journal of Experimental Medicine, 2010, 207, 721-730.	4.2	100
21	Conservation of a chemokine system, XCR1 and its ligand, XCL1, between human and mice. Biochemical and Biophysical Research Communications, 2010, 397, 756-761.	1.0	56
22	Inhibitor of $\hat{\Pi}^{\circ}B$ kinase activity, BAY 11-7082, interferes with interferon regulatory factor 7 nuclear translocation and type I interferon production by plasmacytoid dendritic cells. Arthritis Research and Therapy, 2010, 12, R87.	1.6	24
23	Nucleic acid sensing Toll-like receptors in dendritic cells. Current Opinion in Immunology, 2008, 20, 408-413.	2.4	20
24	Immunoadjuvant effects of polyadenylic:polyuridylic acids through TLR3 and TLR7. International Immunology, 2008, 20, 1-9.	1.8	49
25	Characteristics of Dendritic Cell Responses to Nucleic Acids. , 2008, , 43-58.		0
26	Deletion of the kinase domain from death-associated protein kinase enhances spatial memory in mice. International Journal of Molecular Medicine, 2006, 17, 869.	1.8	9
27	IκB kinase-α is critical for interferon-α production induced by Toll-like receptors 7 and 9. Nature, 2006, 440, 949-953.	13.7	325
28	Induction of \hat{I}^2 -defensin 3 in keratinocytes stimulated by bacterial lipopeptides through toll-like receptor 2. Microbes and Infection, 2006, 8, 1513-1521.	1.0	63
29	The kinase domain of death-associated protein kinase is inhibitory for tubulointerstitial fibrosis in chronic obstructive nephropathy. International Journal of Molecular Medicine, 2005, 15, 73.	1.8	1
30	Deletion of the kinase domain from death-associated protein kinase attenuates p53 expression in chronic obstructive uropathy. International Journal of Molecular Medicine, 2005, 16, 389.	1.8	1
31	Escherichia coliverotoxin 1 mediates apoptosis in human HCT116 colon cancer cells by inducing overexpression of the GADD family of genes and S phase arrest. FEBS Letters, 2005, 579, 6604-6610.	1.3	33
32	Prediction of the Coding Sequences of Mouse Homologues of KIAA Gene: IV. The Complete Nucleotide Sequences of 500 Mouse KIAA-homologous cDNAs Identified by Screening of Terminal Sequences of cDNA Clones Randomly Sampled from Size-Fractionated Libraries. DNA Research, 2004, 11, 205-218.	1.5	14
33	Deletion of the Kinase Domain in Death-Associated Protein Kinase Attenuates Tubular Cell Apoptosis in Renal Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2004, 15, 1826-1834.	3.0	28
34	Gamma Interferon (IFN- \hat{l}^3) and IFN- \hat{l}^3 -Inducing Cytokines Interleukin-12 (IL-12) and IL-18 Do Not Augment Infection-Stimulated Bone Resorption In Vivo. Vaccine Journal, 2004, 11, 106-110.	2.6	50
35	Deletion of the kinase domain in death-associated protein kinase attenuates renal tubular cell apoptosis in chronic obstructive uropathy. International Journal of Molecular Medicine, 2004, 13, 515.	1.8	2
36	The Roles of Two IÎB Kinase-related Kinases in Lipopolysaccharide and Double Stranded RNA Signaling and Viral Infection. Journal of Experimental Medicine, 2004, 199, 1641-1650.	4.2	536

3

#	Article	IF	CITATIONS
37	Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein lκBζ. Nature, 2004, 430, 218-222.	13.7	445
38	Suppression of allergic reaction by \hat{l} » -carrageenan: Toll-like receptor 4/MyD88-dependent and -independent modulation of immunity. Clinical and Experimental Allergy, 2003, 33, 249-258.	1.4	86
39	Normal Development of the Gut-Associated Lymphoid Tissue Except Peyer's Patch in MyD88-Deficient Mice. Scandinavian Journal of Immunology, 2003, 58, 620-627.	1.3	20
40	TRAM is specifically involved in the Toll-like receptor 4–mediated MyD88-independent signaling pathway. Nature Immunology, 2003, 4, 1144-1150.	7.0	919
41	Role of Adaptor TRIF in the MyD88-Independent Toll-Like Receptor Signaling Pathway. Science, 2003, 301, 640-643.	6.0	2,808
42	Contrasting Action of IL-12 and IL-18 in the Development of Dextran Sodium Sulphate Colitis in Mice. Scandinavian Journal of Gastroenterology, 2003, 38, 837-844.	0.6	142
43	Critical Roles of Myeloid Differentiation Factor 88-Dependent Proinflammatory Cytokine Release in Early Phase Clearance of <i>Listeria monocytogenes </i> ii Mice. Journal of Immunology, 2002, 169, 3863-3868.	0.4	265
44	Endotoxin can induce MyD88-deficient dendritic cells to support Th2 cell differentiation. International Immunology, 2002, 14, 695-700.	1.8	176
45	Interleukin 18 (IL-18) in synergy with IL-2 induces lethal lung injury in mice: a potential role for cytokines, chemokines, and natural killer cells in the pathogenesis of interstitial pneumonia. Blood, 2002, 99, 1289-1298.	0.6	87
46	Differential involvement of IFN-Â in Toll-like receptor-stimulated dendritic cell activation. International Immunology, 2002, 14, 1225-1231.	1.8	264
47	Cutting Edge: A Novel Toll/IL-1 Receptor Domain-Containing Adapter That Preferentially Activates the IFN-Î ² Promoter in the Toll-Like Receptor Signaling. Journal of Immunology, 2002, 169, 6668-6672.	0.4	1,123
48	Cutting Edge: Role of Toll-Like Receptor 1 in Mediating Immune Response to Microbial Lipoproteins. Journal of Immunology, 2002, 169, 10-14.	0.4	1,186
49	Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature, 2002, 420, 324-329.	13.7	910
50	Small anti-viral compounds activate immune cells via the TLR7 MyD88–dependent signaling pathway. Nature Immunology, 2002, 3, 196-200.	7.0	2,290
51	Sequence Heterogeneity of the Ten rRNA Operons in Clostridium perfringens. Systematic and Applied Microbiology, 2001, 24, 149-156.	1.2	22
52	Endotoxin-Induced Maturation of MyD88-Deficient Dendritic Cells. Journal of Immunology, 2001, 166, 5688-5694.	0.4	445
53	Lipopolysaccharide Stimulates the MyD88-Independent Pathway and Results in Activation of IFN-Regulatory Factor 3 and the Expression of a Subset of Lipopolysaccharide-Inducible Genes. Journal of Immunology, 2001, 167, 5887-5894.	0.4	986
54	Lipopolysaccharide-Induced IL-18 Secretion from Murine Kupffer Cells Independently of Myeloid Differentiation Factor 88 That Is Critically Involved in Induction of Production of IL-12 and IL- $1\hat{l}^2$. Journal of Immunology, 2001, 166, 2651-2657.	0.4	222

#	Article	IF	Citations
55	A Toll-like receptor recognizes bacterial DNA. Nature, 2000, 408, 740-745.	13.7	5,827
56	Immune Cell Activation by Bacterial Cpg-DNA through Myeloid Differentiation Marker 88 and Tumor Necrosis Factor Receptor–Associated Factor (Traf)6. Journal of Experimental Medicine, 2000, 192, 595-600.	4.2	434
57	Cutting Edge: Preferentially the <i>R</i> -Stereoisomer of the Mycoplasmal Lipopeptide Macrophage-Activating Lipopeptide-2 Activates Immune Cells Through a Toll-Like Receptor 2- and MyD88-Dependent Signaling Pathway. Journal of Immunology, 2000, 164, 554-557.	0.4	550
58	Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. International Immunology, 2000, 12, 113-117.	1.8	291
59	Cutting Edge: TLR2-Deficient and MyD88-Deficient Mice Are Highly Susceptible to <i>Staphylococcus aureus</i> Infection. Journal of Immunology, 2000, 165, 5392-5396.	0.4	983
60	The role of Toll-like receptors and MyD88 in innate immune responses. Journal of Endotoxin Research, 2000, 6, 383-387.	2.5	47
61	The Absence of Interleukin 1 Receptor–Related T1/St2 Does Not Affect T Helper Cell Type 2 Development and Its Effector Function. Journal of Experimental Medicine, 1999, 190, 1541-1548.	4.2	178
62	IL-18, although antiallergic when administered with IL-12, stimulates IL-4 and histamine release by basophils. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13962-13966.	3.3	400
63	Death-associated protein kinase 2 is a new calcium/calmodulin-dependent protein kinase that signals apoptosis through its catalytic activity. Oncogene, 1999, 18, 3471-3480.	2.6	112
64	Differential Roles of TLR2 and TLR4 in Recognition of Gram-Negative and Gram-Positive Bacterial Cell Wall Components. Immunity, 1999, 11, 443-451.	6.6	3,040
65	The genes responsible for O-antigen synthesis of Vibrio cholerae O139 are closely related to those of Vibrio cholerae O22. Gene, 1999, 237, 321-332.	1.0	54
66	The Primary and Higher Order Structures of Sea Urchin Ovoperoxidase as Determined by cDNA Cloning and Predicted by Homology Modeling. Archives of Biochemistry and Biophysics, 1999, 367, 173-184.	1.4	16
67	Development and evaluation of a multiplex PCR assay for rapid detection of toxigenicVibrio choleraeO1 and O139. FEMS Immunology and Medical Microbiology, 1998, 20, 201-207.	2.7	247
68	Cyclic-AMP-Dependent Activation of an Inter-Phylum Hybrid Histone-Kinase Complex Reconstituted from Sea Urchin Sperm-Regulatory Subunits and Bovine Heart Catalytic Subunits. FEBS Journal, 1997, 243, 612-623.	0.2	4
69	A mRNA for Membrane Form of Guanylyl Cyclase Is Expressed Exclusively in the Testis of the Sea Urchin Hemicentrotus pulcherrimus. Zoological Science, 1996, 13, 285-294.	0.3	10
70	Dephosphorylation of Autophosphorylated Regulatory Subunit of Sea Urchin Sperm cAMP-Dependent Histone Kinase by an Endogenous Protein Phosphatase. Zoological Science, 1996, 13, 711-718.	0.3	2
71	Differential Effects of the Egg Jelly Molecules FSG and SAP-I on Elevation of Intracellular Ca2+ and pH in Sea Urchin Spermatozoa. (FSG/SAP-I/[Ca2+]i/pHi). Development Growth and Differentiation, 1992, 34, 403-411.	0.6	9
72	Effects of Sperm-Activating Peptide I on Hemicentrotus pulcherrimus Spermatozoa in High Potassium Sea Water. Development Growth and Differentiation, 1992, 34, 163-172.	0.6	31