
Weihua Zhuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7416599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An intelligent probe with dual-emission in water and oil for lipid droplet specific imaging in human fibrocalcific aortic valvular leaflet. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 271, 120895.	3.9	4
2	A smart probe for simultaneous imaging of the lipid/water microenvironment in atherosclerosis and fatty liver. Chemical Communications, 2022, 58, 4020-4023.	4.1	15
3	Direct [4 + 2] Cycloaddition to Isoquinoline-Fused Porphyrins for Near-Infrared Photodynamic Anticancer Agents. Organic Letters, 2022, 24, 175-180.	4.6	7
4	Specific lipid droplet imaging of atherosclerotic plaques and fatty liver using an imidazole-based fluorescence probe. Dyes and Pigments, 2022, 204, 110439.	3.7	8
5	A lipid droplet-specific fluorescence probe for atherosclerotic plaque imaging. Analyst, The, 2022, 147, 3081-3086.	3.5	6
6	Nitrobenzoxadiazole based lipid droplets specific probes for atherosclerosis imaging. Dyes and Pigments, 2022, 205, 110518.	3.7	8
7	Turn-on fluorescent probe for lipid droplet specific imaging of fatty liver and atherosclerosis. Journal of Materials Chemistry B, 2021, 9, 4050-4055.	5.8	28
8	A lipid droplet targeted fluorescent probe for high-efficiency image-guided photodynamic therapy of renal cell carcinoma. Chemical Communications, 2021, 57, 1046-1049.	4.1	29
9	A biheteroaryl-bridged fluorescence probe enables lipid droplets-specific bioimaging and photodynamic therapy in clinical clear cell renal cell carcinoma. Dyes and Pigments, 2021, 188, 109215.	3.7	15
10	Biomimetic-Coated Nanoplatform with Lipid-Specific Imaging and ROS Responsiveness for Atherosclerosis-Targeted Theranostics. ACS Applied Materials & Interfaces, 2021, 13, 35410-35421.	8.0	33
11	A lipid droplets specific probe for imaging of atherosclerosis and fibrocalcific bicuspid aortic valves. Sensors and Actuators B: Chemical, 2021, 346, 130458.	7.8	11
12	A bifunctional mitochondrial targeting AIE-active fluorescent probe with high sensitivity to hydrogen peroxide and viscosity for fatty liver diagnosis. New Journal of Chemistry, 2021, 45, 12138-12144.	2.8	13
13	A bioprosthetic heart valve cross-linked by a non-glutaraldehyde reagent with improved biocompatibility, endothelialization, anti-coagulation and anti-calcification properties. Journal of Materials Chemistry B, 2021, 9, 4031-4038.	5.8	18
14	A lipid droplet specific fluorescent probe for image-guided photodynamic therapy under hypoxia. Journal of Materials Chemistry B, 2021, 9, 9553-9560.	5.8	13
15	PEGylated chitosan and PEGylated PLCL for blood vessel repair: An in vitro study. Journal of Biomaterials Applications, 2020, 34, 778-789.	2.4	4
16	ROS Responsive Nanoplatform with Twoâ€Photon AIE Imaging for Atherosclerosis Diagnosis and "Twoâ€Pronged―Therapy. Small, 2020, 16, e2003253.	10.0	49
17	Reactive Oxygen Species Responsive Theranostic Nanoplatform for Two-Photon Aggregation-Induced Emission Imaging and Therapy of Acute and Chronic Inflammation. ACS Nano, 2020, 14, 5862-5873.	14.6	100
18	pH and singlet oxygen dual-responsive GEM prodrug micelles for efficient combination therapy of chemotherapy and photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 5645-5654.	5.8	16

WEIHUA ZHUANG

#	Article	IF	CITATIONS
19	Performance of PEGylated chitosan and poly (L-lactic acid-co-ε-caprolactone) bilayer vascular grafts in a canine femoral artery model. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110806.	5.0	18
20	Multi-stimuli responsive polymeric prodrug micelles for combined chemotherapy and photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 5267-5279.	5.8	35
21	Integrated prodrug micelles with two-photon bioimaging and pH-triggered drug delivery for cancer theranostics. International Journal of Energy Production and Management, 2020, 7, 171-180.	3.7	13
22	ROS and GSH Dualâ€Responsive GEM Prodrug Micelles for ROSâ€Triggered Fluorescence Turn on Bioimaging and Cancer Therapy. Advanced Materials Interfaces, 2020, 7, 2000294.	3.7	12
23	Dual-Responsive Micelles with Aggregation-Induced Emission Feature and Two-Photon Aborsption for Accurate Drug Delivery and Bioimaging. Bioconjugate Chemistry, 2019, 30, 2075-2087.	3.6	24
24	Multifunctional Two-Photon AIE Luminogens for Highly Mitochondria-Specific Bioimaging and Efficient Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 20715-20724.	8.0	94
25	A two-photon fluorophore labeled multi-functional drug carrier for targeting cancer therapy, inflammation restraint and AIE active bioimaging. Journal of Materials Chemistry B, 2019, 7, 3894-3908.	5.8	5
26	Two-photon AIE probe conjugated theranostic nanoparticles for tumor bioimaging and pH-sensitive drug delivery. Nano Research, 2019, 12, 1703-1712.	10.4	25
27	Oxidation-Responsive and Aggregation-Induced Emission Polymeric Micelles with Two-Photon Excitation for Cancer Therapy and Bioimaging. ACS Biomaterials Science and Engineering, 2019, 5, 2577-2586.	5.2	23
28	Micelle-Embedded Layer-by-Layer Coating with Catechol and Phenylboronic Acid for Tunable Drug Loading, Sustained Release, Mild Tissue Response, and Selective Cell Fate for Re-endothelialization. ACS Applied Materials & Interfaces, 2019, 11, 10337-10350.	8.0	48
29	Hierarchical Responsive Nanoplatform with Two-Photon Aggregation-Induced Emission Imaging for Efficient Cancer Theranostics. ACS Applied Materials & Interfaces, 2019, 11, 47259-47269.	8.0	14
30	Two-photon AIE luminogen labeled multifunctional polymeric micelles for theranostics. Theranostics, 2019, 9, 6618-6630.	10.0	24
31	A fully absorbable biomimetic polymeric micelle loaded with cisplatin as drug carrier for cancer therapy. International Journal of Energy Production and Management, 2018, 5, 1-8.	3.7	11
32	A biomimetic and pH-sensitive polymeric micelle as carrier for paclitaxel delivery. International Journal of Energy Production and Management, 2018, 5, 15-24.	3.7	30
33	pH-sensitive doxorubicin-conjugated prodrug micelles with charge-conversion for cancer therapy. Acta Biomaterialia, 2018, 70, 186-196.	8.3	79
34	Redox-Responsive Biomimetic Polymeric Micelle for Simultaneous Anticancer Drug Delivery and Aggregation-Induced Emission Active Imaging. Bioconjugate Chemistry, 2018, 29, 1897-1910.	3.6	54
35	Cation–anion interaction-directed formation of functional vesicles and their biological application for nucleus-specific imaging. New Journal of Chemistry, 2018, 42, 9187-9192.	2.8	5
36	TPE onjugated biomimetic and biodegradable polymeric micelle for AIE active cell imaging and cancer therapy. Journal of Applied Polymer Science, 2018, 135, 45651.	2.6	18

WEIHUA ZHUANG

#	Article	IF	CITATIONS
37	Micelles prepared from poly(N-isopropylacrylamide-co-tetraphenylethene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 hydrophilic drug carrier. Journal of Materials Chemistry B, 2018, 6, 7495-7502.	0 Tf 50 74 5.8	7 Td (acryla 10
38	Dual-Responsive Doxorubicin-Conjugated Polymeric Micelles with Aggregation-Induced Emission Active Bioimaging and Charge Conversion for Cancer Therapy. Bioconjugate Chemistry, 2018, 29, 4050-4061.	3.6	32
39	Redox and pH Dual-Responsive Polymeric Micelles with Aggregation-Induced Emission Feature for Cellular Imaging and Chemotherapy. ACS Applied Materials & Interfaces, 2018, 10, 18489-18498.	8.0	91
40	Multifunctional coatings that mimic the endothelium: surface bound active heparin nanoparticles with <i>in situ</i> generation of nitric oxide from nitrosothiols. Journal of Materials Chemistry B, 2018, 6, 5582-5595.	5.8	43
41	High contrast stimuli-responsive luminescence switching of pyrene-1-carboxylic esters triggered by a crystal-to-crystal transition. New Journal of Chemistry, 2017, 41, 13784-13791.	2.8	24
42	Cation–anion interaction directed dual-mode switchable mechanochromic luminescence. Journal of Materials Chemistry C, 2017, 5, 8527-8534.	5.5	18
43	Preparation of organic mechanochromic fluorophores with simple structures and promising mechanochromic luminescence properties. RSC Advances, 2016, 6, 84787-84793.	3.6	18
44	Stability research on polydopamine and immobilized albumin on 316L stainless steel. International Journal of Energy Production and Management, 2016, 3, 277-284.	3.7	11
45	Drug carrier system self-assembled from biomimetic polyphosphorycholine and biodegradable polypeptide based diblock copolymers. Polymer, 2016, 100, 45-55.	3.8	27
46	In situ synthesis of multidentate PEGylated chitosan modified gold nanoparticles with good stability and biocompatibility. RSC Advances, 2015, 5, 70109-70116.	3.6	29