
Nadia Krieger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7416588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Developments in Microbial Inulinases: Its Production, Properties, and Industrial Applications. Applied Biochemistry and Biotechnology, 1999, 81, 35-52.	1.4	199
2	New developments in solid-state fermentation. Process Biochemistry, 2000, 35, 1211-1225.	1.8	184
3	A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochemical Engineering Journal, 2004, 17, 15-26.	1.8	157
4	Identification and characterization of a new true lipase isolated through metagenomic approach. Microbial Cell Factories, 2011, 10, 54.	1.9	152
5	Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chemistry and Physics of Lipids, 2007, 147, 1-13.	1.5	141
6	Activity and stability of a crude lipase from Penicillium aurantiogriseum in aqueous media and organic solvents. Biochemical Engineering Journal, 2004, 18, 65-71.	1.8	116
7	Recent developments in modeling of solid-state fermentation: heat and mass transfer in bioreactors. Biochemical Engineering Journal, 2003, 13, 137-147.	1.8	104
8	Synthesis of biodiesel in column fixed-bed bioreactor using the fermented solid produced by Burkholderia cepacia LTEB11. Process Biochemistry, 2010, 45, 1348-1354.	1.8	100
9	Production of pectinases by solid-state fermentation of a mixture of citrus waste and sugarcane bagasse in a pilot-scale packed-bed bioreactor. Biochemical Engineering Journal, 2016, 111, 54-62.	1.8	98
10	Esterification and transesterification reactions catalysed by addition of fermented solids to organic reaction media. Journal of Molecular Catalysis B: Enzymatic, 2007, 44, 8-13.	1.8	94
11	Biodiesel production from soybean soapstock acid oil by hydrolysis in subcritical water followed by lipase-catalyzed esterification using a fermented solid in a packed-bed reactor. Biochemical Engineering Journal, 2013, 81, 15-23.	1.8	91
12	First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 719-729.	1.2	87
13	Production of surfactin by Bacillus pumilus UFPEDA 448 in solid-state fermentation using a medium based on okara with sugarcane bagasse as a bulking agent. Process Biochemistry, 2012, 47, 1848-1855.	1.8	87
14	Scale-up strategies for packed-bed bioreactors for solid-state fermentation. Process Biochemistry, 1999, 35, 167-178.	1.8	78
15	Thermal denaturation: is solid-state fermentation really a good technology for the production of enzymes?. Bioresource Technology, 2004, 93, 261-268.	4.8	76
16	Hydrolysis and synthesis reactions catalysed by Thermomyces lanuginosa lipase in the AOT/Isooctane reversed micellar system. Journal of Molecular Catalysis B: Enzymatic, 2004, 30, 43-49.	1.8	74
17	Production of rhamnolipids in solid-state cultivation using a mixture of sugarcane bagasse and corn bran supplemented with glycerol and soybean oil. Applied Microbiology and Biotechnology, 2011, 89, 1395-1403.	1.7	60
18	Production of pectinases by solid-state fermentation in a pilot-scale packed-bed bioreactor. Chemical Engineering Journal. 2016. 283. 1009-1018.	6.6	59

#	Article	IF	CITATIONS
19	Pectinase Activity Determination: An Early Deceleration in the Release of Reducing Sugars Throws a Spanner in the Works!. PLoS ONE, 2014, 9, e109529.	1.1	55
20	Lipase from a Brazilian strain ofPenicillium citrinum. Applied Biochemistry and Biotechnology, 1994, 49, 59-74.	1.4	53
21	Screening Botryosphaeria species for lipases: Production of lipase by Botryosphaeria ribis EC-01 grown on soybean oil and other carbon sources. Enzyme and Microbial Technology, 2009, 45, 426-431.	1.6	46
22	Overview of solid state bioprocessing. Biotechnology Annual Review, 2002, 8, 183-225.	2.1	45
23	Evaluation of the potential for use in biocatalysis of a lipase from a wild strain of Bacillus megaterium. Journal of Molecular Catalysis B: Enzymatic, 2004, 31, 53-61.	1.8	45
24	Biochemical Engineering Aspects of Solid State Bioprocessing. Advances in Biochemical Engineering/Biotechnology, 2000, 68, 61-138.	0.6	42
25	Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture. Applied Microbiology and Biotechnology, 2008, 81, 441-448.	1.7	41
26	New Heterofunctional Supports Based on Glutaraldehyde-Activation: A Tool for Enzyme Immobilization at Neutral pH. Molecules, 2017, 22, 1088.	1.7	39
27	A mathematical model describing the effect of temperature variations on the kinetics of microbial growth in solid-state culture. Process Biochemistry, 2005, 40, 801-807.	1.8	38
28	Intermittent agitation contributes to uniformity across the bed during pectinase production by Aspergillus niger grown in solid-state fermentation in a pilot-scale packed-bed bioreactor. Biochemical Engineering Journal, 2017, 121, 1-12.	1.8	38
29	Recent Trends in Biomaterials for Immobilization of Lipases for Application in Non-Conventional Media. Catalysts, 2020, 10, 697.	1.6	36
30	Biodiesel: Raw Materials, Production Technologies and Fuel Properties. Revista Virtual De Quimica, 2017, 9, 317-369.	0.1	34
31	Transesterification of castor oil in a solvent-free medium using the lipase from Burkholderia cepacia LTEB11 immobilized on a hydrophobic support. Fuel, 2014, 117, 458-462.	3.4	32
32	Immobilization and Characterization of a New Regioselective and Enantioselective Lipase Obtained from a Metagenomic Library. PLoS ONE, 2015, 10, e0114945.	1.1	32
33	Optimization studies to develop a low-cost medium for production of the lipases of Rhizopus microsporus by solid-state fermentation and scale-up of the process to a pilot packed-bed bioreactor. Process Biochemistry, 2017, 62, 37-47.	1.8	32
34	Purification of thePenicillium citrinum Lipase Using AOT Reversed Micelles. Journal of Chemical Technology and Biotechnology, 1997, 69, 77-85.	1.6	31
35	Production of Microbial Biosurfactants by Solid-State Cultivation. Advances in Experimental Medicine and Biology, 2010, 672, 203-210.	0.8	31
36	Functional properties of yam bean (Pachyrhizus erosus) starch. Bioresource Technology, 2003, 89, 103-106.	4.8	30

#	Article	IF	CITATIONS
37	Immobilization of LipC12, a new lipase obtained by metagenomics, and its application in the synthesis of biodiesel esters. Journal of Molecular Catalysis B: Enzymatic, 2015, 116, 45-51.	1.8	30
38	Metagenomics: Is it a powerful tool to obtain lipases for application in biocatalysis?. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140320.	1.1	30
39	Synthesis of Ethylic Esters for Biodiesel Purposes Using Lipases Naturally Immobilized in a Fermented Solid Produced Using <i>Rhizopus microsporus</i> . Energy & Fuels, 2014, 28, 5197-5203.	2.5	29
40	Production of rhamnolipids in solidâ€ s tate cultivation: Characterization, downstream processing and application in the cleaning of contaminated soils. Biotechnology Journal, 2009, 4, 748-755.	1.8	27
41	A Model for Growth of a Single Fungal Hypha Based on Well-Mixed Tanks in Series: Simulation of Nutrient and Vesicle Transport in Aerial Reproductive Hyphae. PLoS ONE, 2015, 10, e0120307.	1.1	27
42	Biodiesel production by solvent-free ethanolysis of palm oil catalyzed by fermented solids containing lipases of Burkholderia contaminans. Biochemical Engineering Journal, 2017, 127, 77-86.	1.8	27
43	An efficient system for catalyzing ester synthesis using a lipase from a newly isolatedBurkholderia cepaciastrain. Biocatalysis and Biotransformation, 2008, 26, 197-203.	1.1	26
44	Analysis of multiphasic behavior during the ethyl esterification of fatty acids catalyzed by a fermented solid with lipolytic activity in a packed-bed bioreactor in a closed-loop batch system. Fuel, 2015, 159, 364-372.	3.4	26
45	Scale-up of biodiesel synthesis in a closed-loop packed-bed bioreactor system using the fermented solid produced by Burkholderia lata LTEB11. Chemical Engineering Journal, 2017, 316, 341-349.	6.6	26
46	Conversion of orange peel to L-galactonic acid in a consolidated process using engineered strains of Aspergillus niger. AMB Express, 2014, 4, 33.	1.4	25
47	Physicochemical Properties of Jacatupé (Pachyrhizus erosus L. Urban) Starch. Starch/Staerke, 1994, 46, 245-247.	1.1	24
48	The potential for establishment of axial temperature profiles during solid-state fermentation in rotating drum bioreactors. Biotechnology and Bioengineering, 2002, 80, 114-122.	1.7	24
49	A model-based investigation of the potential advantages of multi-layer packed beds in solid-state fermentation. Biochemical Engineering Journal, 2010, 48, 195-203.	1.8	23
50	An analytical method for determining relative specificities for sequential reactions catalyzed by the same enzyme: General formulation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 705-715.	1.1	20
51	The introduction of the fungal d-galacturonate pathway enables the consumption of d-galacturonic acid by Saccharomyces cerevisiae. Microbial Cell Factories, 2016, 15, 144.	1.9	20
52	Optimization of biodiesel synthesis by esterification using a fermented solid produced by Rhizopus microsporus on sugarcane bagasse. Bioprocess and Biosystems Engineering, 2018, 41, 573-583.	1.7	20
53	Kinetic characterization ofpenicillium citrinum lipase in AOT/lsooctane-reversed micelles. Applied Biochemistry and Biotechnology, 1997, 67, 87-95.	1.4	19
54	Immobilization of laccase on hybrid layered double hydroxide. Quimica Nova, 2009, 32, 1495-1499.	0.3	19

#	Article	IF	CITATIONS
55	Production of Fatty Acid Ethyl Esters from Waste Cooking Oil Using Novozym 435 in a Solvent-Free System. Energy & Fuels, 2015, 29, 8074-8081.	2.5	19
56	Immobilization of Pseudomonas cepacia lipase on layered double hydroxide of Zn/Al-Cl for kinetic resolution of rac-1-phenylethanol. Enzyme and Microbial Technology, 2019, 130, 109365.	1.6	19
57	An analytical method for determining relative specificities for sequential reactions catalyzed by the same enzyme: Application to the hydrolysis of triacylglycerols by lipases. Journal of Biotechnology, 2008, 133, 343-350.	1.9	17
58	Bioreactors for Solid-State Fermentation. , 2011, , 347-360.		17
59	A comparative study of the synthesis of n-butyl-oleate using a crude lipolytic extract of Penicillum coryophilum in water-restricted environments. Journal of Molecular Catalysis B: Enzymatic, 2005, 34, 25-32.	1.8	16
60	Determination of the quantitative stereoselectivity fingerprint of lipases during hydrolysis of a prochiral triacylglycerol. Journal of Biotechnology, 2008, 135, 168-173.	1.9	16
61	Solid-State Fermentation Bioreactor Fundamentals: Introduction and Overview. , 2006, , 1-12.		15
62	Introduction to Solid-State Fermentation Bioreactors. , 2006, , 33-44.		15
63	A three-dimensional discrete lattice-based system for modeling the growth of aerial hyphae of filamentous fungi on solid surfaces: A tool for investigating micro-scale phenomena in solid-state fermentation. Biochemical Engineering Journal, 2011, 54, 164-171.	1.8	15
64	Biochemical characterization and application of a new lipase and its cognate foldase obtained from a metagenomic library derived from fat-contaminated soil. International Journal of Biological Macromolecules, 2019, 137, 442-454.	3.6	15
65	First co-expression of a lipase and its specific foldase obtained by metagenomics. Microbial Cell Factories, 2014, 13, 171.	1.9	14
66	Key mutation sites for improvement of the enantioselectivity of lipases through protein engineering. Biochemical Engineering Journal, 2021, 172, 108047.	1.8	14
67	Purification of a Penicillium citrinum lipase by chromatographic processes. Bioprocess and Biosystems Engineering, 1999, 20, 59-65.	0.5	13
68	Enhancing the enantioselectivity of the lipase from Burkholderia cepacia LTEB11 towards the resolution of secondary allylic alcohols. Biocatalysis and Agricultural Biotechnology, 2014, 3, 146-153.	1.5	13
69	New Tailor-Made Alkyl-Aldehyde Bifunctional Supports for Lipase Immobilization. Catalysts, 2016, 6, 191.	1.6	13
70	SPIL: Simultaneous production and immobilization of lipase from <i>Burkholderia cepacia</i> LTEB11. Biocatalysis and Biotransformation, 2011, 29, 19-24.	1.1	12
71	Characterization of an immobilized recombinant lipase from Rhizopus oryzae: Synthesis of ethyl-oleate. Biocatalysis and Agricultural Biotechnology, 2014, 3, 13-19.	1.5	12
72	Modeling the Growth of Filamentous Fungi at the Particle Scale in Solid-State Fermentation Systems. Advances in Biochemical Engineering/Biotechnology, 2015, 149, 171-221.	0.6	12

#	Article	IF	CITATIONS
73	Tailoring recombinant lipases: keeping the His-tag favors esterification reactions, removing it favors hydrolysis reactions. Scientific Reports, 2018, 8, 10000.	1.6	12
74	Production of a fermented solid containing lipases from <i>Penicillium roqueforti</i> ATCC 10110 and its direct employment in organic medium in ethyl oleate synthesis. Biotechnology and Applied Biochemistry, 2022, 69, 1284-1299.	1.4	12
75	Enzymatic kinetic resolution of aliphatic sec -alcohols by LipG9, a metagenomic lipase. Journal of Molecular Catalysis B: Enzymatic, 2016, 125, 58-63.	1.8	11
76	Synthesis of fatty acid ethyl esters with conventional and microwave heating systems using the free lipase B from <i>Candida antarctica</i> . Biocatalysis and Biotransformation, 2019, 37, 25-34.	1.1	11
77	A model-based strategy for scaling-up traditional packed-bed bioreactors for solid-state fermentation based on measurement of O2 uptake rates. Biochemical Engineering Journal, 2021, 166, 107854.	1.8	11
78	A factorial approach for a sugarcane juice-based low cost culture medium: increasing the astaxanthin production by the red yeast. Bioprocess and Biosystems Engineering, 1998, 19, 161.	0.5	11
79	Interesterification of fat blends using a fermented solid with lipolytic activity. Journal of Molecular Catalysis B: Enzymatic, 2012, 76, 75-81.	1.8	10
80	A combined sorption and kinetic model for multiphasic ethyl esterification of fatty acids from soybean soapstock acid oil catalyzed by a fermented solid with lipase activity in a solvent-free system. Biochemical Engineering Journal, 2017, 120, 84-92.	1.8	10
81	Conversion of citric pectin into D-galacturonic acid with high substrate loading using a fermented solid with pectinolytic activity. Biocatalysis and Agricultural Biotechnology, 2017, 11, 214-219.	1.5	10
82	Co-expression, purification and characterization of the lipase and foldase of Burkholderia contaminans LTEB11. International Journal of Biological Macromolecules, 2018, 116, 1222-1231.	3.6	10
83	Structure solution and analyses of the first true lipase obtained from metagenomics indicate potential for increased thermostability. New Biotechnology, 2019, 53, 65-72.	2.4	10
84	Estimation of heat and mass transfer coefficients in a pilot packed-bed solid-state fermentation bioreactor. Chemical Engineering Journal, 2021, 408, 127246.	6.6	10
85	Synthesis of flavor esters and structured lipids by a new immobilized lipase, LipC12, obtained from metagenomics. Biocatalysis and Agricultural Biotechnology, 2016, 8, 294-300.	1.5	9
86	Immobilization and bioimprinting strategies to enhance the performance in organic medium of the metagenomic lipase LipC12. Journal of Biotechnology, 2021, 342, 13-27.	1.9	9
87	Atomic Force Microscopy: A Useful Tool for Evaluating Aggregation of Lipases. Microscopy and Microanalysis, 2005, 11, 74-77.	0.2	8
88	Liquid–liquid equilibrium data and thermodynamic modeling for systems related to the production of ethyl esters of fatty acids from soybean soapstock acid oil. Fuel, 2015, 147, 147-154.	3.4	8
89	Fingerprinting of oligosaccharide-hydrolyzing enzymes that catalyze branched reaction schemes. Biochemical Engineering Journal, 2016, 113, 93-101.	1.8	8
90	Activity and Stability of Lipase Preparations from <i>Penicillium corylophilum</i> : Potential Use in Biocatalysis. Chemical Engineering and Technology, 2014, 37, 1987-1992.	0.9	7

2

#	Article	IF	CITATIONS
91	A novel enzymatic method for the synthesis of methyl 6-O-acetyl-α-d-glucopyranoside using a fermented solid containing lipases produced by Burkholderia contaminans LTEB11. Process Biochemistry, 2018, 73, 86-93.	1.8	7
92	Design and Operation of a Pilot-Scale Packed-Bed Bioreactor for the Production of Enzymes by Solid-State Fermentation. Advances in Biochemical Engineering/Biotechnology, 2019, 169, 27-50.	0.6	7
93	Evaluation of the Structural Composition and Surface Properties of Rhamnolipid Mixtures Produced by Pseudomonas aeruginosa UFPEDA 614 in Different Cultivation Periods. Applied Biochemistry and Biotechnology, 2015, 175, 988-995.	1.4	6
94	Group I Bioreactors: Unaerated and Unmixed. , 2006, , 65-76.		5
95	Group III: Rotating-Drum and Stirred-Drum Bioreactors. , 2006, , 95-114.		5
96	Colonization of solid particles by Rhizopus oligosporus and Aspergillus oryzae in solid-state fermentation involves two types of penetrative hyphae: A model-based study on how these hyphae grow. Biochemical Engineering Journal, 2016, 114, 173-182.	1.8	5
97	A new mathematical method for determining the enantiomeric ratio in lipase-catalyzed reactions. Journal of Molecular Catalysis B: Enzymatic, 2010, 64, 23-28.	1.8	4
98	Solid-State Cultivation Bioreactors. Learning Materials in Biosciences, 2019, , 105-133.	0.2	4
99	Fermented solids that contain lipases produced by Rhizopus microsporus have an S-enantiopreference in the resolution of secondary alcohols. Biochemical Engineering Journal, 2021, 165, 107817.	1.8	4
100	Kinetics of enzymatic cetyl palmitate production by esterification with fermented solid of Burkholderia contaminans in the presence of organic solvent. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 139-153.	0.8	4
101	The Bioreactor Step of SSF: A Complex Interaction of Phenomena. , 2006, , 13-32.		3
102	Stochastic models based on the Monte Carlo method for the hydrolysis of oligogalacturonates and polygalacturonates by endopolygalacturonases and exopolygalacturonases. Chemical Engineering Journal, 2017, 322, 417-427.	6.6	3
103	Fingerprinting processive Î ² -amylases. Biochemical Engineering Journal, 2018, 137, 334-343.	1.8	3
104	Kinetics of lipase-catalyzed kinetic resolutions of racemic compounds: Reparameterization in terms of specificity constants. Biochemical Engineering Journal, 2022, 181, 108397.	1.8	3
105	Enzymatic transglycosylation by the Ping Pong bi bi mechanism: Selectivity for transglycosylation versus primary and secondary hydrolysis. Biochemical Engineering Journal, 2022, 182, 108440.	1.8	3
106	Group IVa: Continuously-Mixed, Forcefully-Aerated Bioreactors. , 2006, , 115-128.		2
107	Group II Bioreactors: Forcefully-Aerated Bioreactors Without Mixing. , 2006, , 77-94.		2

108 A Model of a Rotating-Drum Bioreactor. , 2006, , 315-330.

#	Article	IF	CITATIONS
109	Determination of lipase activity using image analysis. Analytical Biochemistry, 2006, 351, 305-307.	1.1	2
110	Environmental Solid-State Cultivation Processes and Bioreactors. , 2010, , 287-342.		2
111	Crystallization and preliminary crystallographic analysis of LipC12, a true lipase isolated through a metagenomics approach. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 175-177.	0.7	2
112	Fermented Solids and Their Application in the Production of Organic Compounds of Biotechnological Interest. Advances in Biochemical Engineering/Biotechnology, 2019, 169, 125-146.	0.6	2
113	Immobilized lipases in sericin–dimethylolurea films as biocatalysts in esterification. Chemical Papers, 2019, 73, 645-652.	1.0	2
114	More random-walk than autotropism: A model-based study on how aerial hyphae of Rhizopus oligosporus grow in solid-state fermentation. Biochemical Engineering Journal, 2019, 141, 49-59.	1.8	2
115	Time is of the essence: A new strategy for time-stepping in stochastic models describing the enzymatic hydrolysis of colloidal suspensions of polysaccharides. Chemical Engineering Journal, 2021, 405, 126672.	6.6	2
116	Potential of time-stepping stochastic models as tools for guiding the design and operation of processes for the enzymatic hydrolysis of polysaccharides – A review. Bioresource Technology, 2021, 323, 124559.	4.8	2
117	Biocatalytic asymmetric synthesis of secondary allylic alcohols using <scp><i>Burkholderia cepacia</i></scp> lipase immobilized on multiwalled carbon nanotubes. Chirality, 2022, 34, 1008-1018.	1.3	2
118	Recent Developments in Modeling of Microbial Growth Kinetics and Intraparticle Phenomena in Solid State Fermentation. ChemInform, 2004, 35, no.	0.1	1
119	Modeling of the Effects of Growth on the Local Environment. , 2006, , 235-248.		1
120	A Model of a Well-mixed SSF Bioreactor. , 2006, , 295-314.		1
121	Models of Packed-Bed Bioreactors. , 2006, , 331-348.		1
122	Imobilização de Lipases em Biofilmes de Sericina Para Utilização em Biocatálise. BBR - Biochemistry and Biotechnology Reports, 2013, 2, 154.	0.0	1
123	LipG9-mediated enzymatic kinetic resolution of racemates: Expanding the substrate-scope for a metagenomic lipase. Molecular Catalysis, 2019, 473, 110402.	1.0	1
124	Genome sequencing of Burkholderia contaminans LTEB11 reveals a lipolytic arsenal of biotechnological interest. Brazilian Journal of Microbiology, 2019, 50, 619-624.	0.8	1
125	Solid-State Fermentation. , 2019, , .		1
126	Performing under pressure: esterification activity of dry fermented solids in subcritical and supercritical CO2. Biotechnology Letters, 2021, 43, 503-509.	1.1	1

#	Article	IF	CITATIONS
127	Rate equations for two enzyme-catalyzed Ping Pong bi bi reactions in series: General formulation for two reaction loops joined by a common vertex and deduction of a reaction loop selectivity factor. Biochemical Engineering Journal, 2022, 177, 108234.	1.8	1
128	Group IVb: Intermittently-Mixed Forcefully-Aerated Bioreactors. , 2006, , 129-140.		0
129	Appropriate Levels of Complexity for Modeling SSF Bioreactors. , 2006, , 179-190.		0
130	The Kinetic Sub-model of SSF Bioreactor Models: General Considerations. , 2006, , 191-206.		0
131	Growth Kinetics in SSF Systems: Experimental Approaches. , 2006, , 207-218.		0
132	Basic Features of the Kinetic Sub-model. , 2006, , 219-234.		0
133	A Model of an Intermittently-Mixed Forcefully-Aerated Bioreactor. , 2006, , 349-362.		0
134	Future Prospects for SSF Bioreactors. , 2006, , 413-415.		0
135	Use of the Langmuir-Hinshelwood-Hougen-Watson equation to describe the ethyl esterification of fatty acids catalyzed by a fermented solid with lipase activity. Biochemical Engineering Journal, 2021, 168, 107936.	1.8	0
136	Evaluation of lipases from metagenomic in kinetic resolution of secondary alcohols. , 0, , .		0
137	Utilização do Ultrassom em Reações de Esterificação Catalisadas por Lipases Imobilizadas. , 0, , .		0
138	Imobilização de lipases em filmes biodegradáveis e aplicação em reações de esterificação. , 0, , .		0
139	ESCALONAMENTO DA PRODUÇÃ f O DE BIODIESEL EM REATOR DE LEITO FIXO COM O SÓLIDO FERMENTADO DE Burkholderia lata CPQBA 515-12 DRM 01. , 0, , .		0
140	UTILIZAÇÃO DO SÓLIDO FERMENTADO DE Rhizopus microsporus CPQBA 312-07 DRM NA RESOLUÇÃO DE (R,S)-1-FENIL-1-ETANOL: ENANTIOPREFERÊNCIA ANTI-KAZLAUSKAS. , 0, , .		0
141	PRODUÇÃO DE ENZIMA EM FERMENTAÇÃO NO ESTADO SÓLIDO EM BIORREATOR PILOTO: ESTRATÉGIA CONTROLE DA TEMPERATURA DO LEITO. , 0, , .	DE	0
142	Estudo da agitação intermitente na produção de pectinases em fermentação no estado sólido em biorreator piloto. , 0, , .		0
143	MODELAGEM TERMODINÃ,MICA DE SISTEMAS RELACIONADOS À SÃNTESE DE ÉSTERES DO BIODIESEL A PA DE MATÉRIA-PRIMA RESIDUAL. , 0, , .	rtir	0
144	PRODUÇÃ∱O DE ÉSTERES ETÃLICOS VIA CATÃLISE ENZIMÃTICA EM SISTEMAS LIVRES DE COSSOLVENTE. , 0,	,,.	0

#	Article	IF	CITATIONS
145	Imobilização de Lipases em Biofilmes de Amido e Poliéster contendo Montmorilonita Sódica e Àido Itacônico para Aplicação em Biocatálise Assistida por Ultrassom. , 0, , .		0
146	Imobilização de Lipases em Zeólita A obtidas a partir da Cinza de Biomassa da Bananeira. , 0, , .		0