List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7416272/publications.pdf Version: 2024-02-01



ADDIAN I MATTHEWS

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nitrogen-enhanced greenhouse warming on earlyÂEarth. Nature Geoscience, 2009, 2, 891-896.                                                                                                                                   | 12.9 | 247       |
| 2  | The global response to tropical heating in the Madden–Julian oscillation during the northern winter.<br>Quarterly Journal of the Royal Meteorological Society, 2004, 130, 1991-2011.                                        | 2.7  | 241       |
| 3  | Propagation mechanisms for the Madden-Julian Oscillation. Quarterly Journal of the Royal<br>Meteorological Society, 2000, 126, 2637-2651.                                                                                   | 2.7  | 239       |
| 4  | Propagation of the Madden–Julian Oscillation through the Maritime Continent and scale interaction<br>with the diurnal cycle of precipitation. Quarterly Journal of the Royal Meteorological Society, 2014,<br>140, 814-825. | 2.7  | 229       |
| 5  | The Modulation of Tropical Cyclone Activity in the Australian Region by the Madden–Julian<br>Oscillation. Monthly Weather Review, 2001, 129, 2970-2982.                                                                     | 1.4  | 211       |
| 6  | Primary and successive events in the Madden–Julian Oscillation. Quarterly Journal of the Royal<br>Meteorological Society, 2008, 134, 439-453.                                                                               | 2.7  | 198       |
| 7  | Intraseasonal Variability over Tropical Africa during Northern Summer. Journal of Climate, 2004, 17, 2427-2440.                                                                                                             | 3.2  | 184       |
| 8  | The diurnal cycle of precipitation over the Maritime Continent in a highâ€resolution atmospheric model. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 934-947.                                          | 2.7  | 159       |
| 9  | The Tropical–Extratropical Interaction between High-Frequency Transients and the Madden–Julian<br>Oscillation. Monthly Weather Review, 1999, 127, 661-677.                                                                  | 1.4  | 136       |
| 10 | Observed Changes in the Lifetime and Amplitude of the Madden–Julian Oscillation Associated with<br>Interannual ENSO Sea Surface Temperature Anomalies. Journal of Climate, 2007, 20, 2659-2674.                             | 3.2  | 119       |
| 11 | Scale Interactions between the MJO and the Western Maritime Continent. Journal of Climate, 2016, 29, 2471-2492.                                                                                                             | 3.2  | 115       |
| 12 | Response of the West African Monsoon to the Madden–Julian Oscillation. Journal of Climate, 2009,<br>22, 4097-4116.                                                                                                          | 3.2  | 83        |
| 13 | Rainfall-induced volcanic activity on Montserrat. Geophysical Research Letters, 2002, 29, 22-1.                                                                                                                             | 4.0  | 80        |
| 14 | A multiscale framework for the origin and variability of the South Pacific Convergence Zone.<br>Quarterly Journal of the Royal Meteorological Society, 2012, 138, 1165-1178.                                                | 2.7  | 73        |
| 15 | Interactions between ENSO, Transient Circulation, and Tropical Convectionover the Pacific. Journal of Climate, 1999, 12, 3062-3086.                                                                                         | 3.2  | 71        |
| 16 | Development of convection along the SPCZ within a Madden-Julian oscillation. Quarterly Journal of the Royal Meteorological Society, 1996, 122, 669-688.                                                                     | 2.7  | 66        |
| 17 | Variability of Antarctic circumpolar transport and the Southern Annular Mode associated with the Madden-Julian Oscillation. Geophysical Research Letters, 2004, 31, .                                                       | 4.0  | 64        |
| 18 | A dynamical framework for the origin of the diagonal South Pacific and South Atlantic Convergence<br>Zones. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1997-2010.                                    | 2.7  | 60        |

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Interannual variability of the tropical Atlantic independent of and associated with ENSO: Part I. The<br>North Tropical Atlantic. International Journal of Climatology, 2006, 26, 1937-1956.  | 3.5  | 58        |
| 20 | The Surface Diurnal Warm Layer in the Indian Ocean during CINDY/DYNAMO. Journal of Climate, 2014, 27, 9101-9122.                                                                              | 3.2  | 58        |
| 21 | Ocean Rossby waves as a triggering mechanism for primary Madden–Julian events. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 514-527.                                     | 2.7  | 57        |
| 22 | The Dynamics of the Southwest Monsoon Current in 2016 from High-Resolution In Situ Observations and Models. Journal of Physical Oceanography, 2018, 48, 2259-2282.                            | 1.7  | 55        |
| 23 | Deep Ocean Impact of a Madden-Julian Oscillation Observed by Argo Floats. Science, 2007, 318, 1765-1769.                                                                                      | 12.6 | 54        |
| 24 | Propagation of the Madden–Julian Oscillation and scale interaction with the diurnal cycle in a high-resolution GCM. Climate Dynamics, 2015, 45, 2901-2918.                                    | 3.8  | 51        |
| 25 | A dynamical ocean feedback mechanism for the Madden–Julian Oscillation. Quarterly Journal of the<br>Royal Meteorological Society, 2010, 136, 740-754.                                         | 2.7  | 49        |
| 26 | South Pacific Convergence Zone dynamics, variability and impacts in a changing climate. Nature<br>Reviews Earth & Environment, 2020, 1, 530-543.                                              | 29.7 | 49        |
| 27 | A conceptual framework for time and space scale interactions in the climate system. Climate Dynamics, 2001, 17, 753-775.                                                                      | 3.8  | 47        |
| 28 | BoBBLE: Ocean–Atmosphere Interaction and Its Impact on the South Asian Monsoon. Bulletin of the<br>American Meteorological Society, 2018, 99, 1569-1587.                                      | 3.3  | 45        |
| 29 | Ocean temperature and salinity components of the Madden–Julian oscillation observed by Argo<br>floats. Climate Dynamics, 2010, 35, 1149-1168.                                                 | 3.8  | 44        |
| 30 | Vertical distribution of chlorophyll in dynamically distinct regions of the southern Bay of Bengal.<br>Biogeosciences, 2019, 16, 1447-1468.                                                   | 3.3  | 43        |
| 31 | Atmospheric response to observed intraseasonal tropical sea surface temperature anomalies.<br>Geophysical Research Letters, 2004, 31, .                                                       | 4.0  | 38        |
| 32 | Closing the sea surface mixed layer temperature budget from in situ observations alone: Operation<br>Advection during BoBBLE. Scientific Reports, 2020, 10, 7062.                             | 3.3  | 38        |
| 33 | Meteorological monitoring of an active volcano: Implications for eruption prediction. Journal of<br>Volcanology and Geothermal Research, 2006, 150, 339-358.                                  | 2.1  | 37        |
| 34 | Interannual variability of the Tropical Atlantic independent of and associated with ENSO: Part II. The<br>South Tropical Atlantic. International Journal of Climatology, 2006, 26, 1957-1976. | 3.5  | 34        |
| 35 | Why the South Pacific Convergence Zone is diagonal. Climate Dynamics, 2016, 46, 1683-1698.                                                                                                    | 3.8  | 34        |
| 36 | Mechanisms of Barrier Layer Formation and Erosion from In Situ Observations in the Bay of Bengal.<br>Journal of Physical Oceanography, 2019, 49, 1183-1200.                                   | 1.7  | 33        |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Fast and slow Kelvin waves in the Madden-Julian oscillation of a GCM. Quarterly Journal of the Royal<br>Meteorological Society, 1999, 125, 1473-1498.                                                                                         | 2.7 | 29        |
| 38 | The fast response of volcano-seismic activity to intense precipitation: Triggering of primary volcanic<br>activity by rainfall at Soufrière Hills Volcano, Montserrat. Journal of Volcanology and Geothermal<br>Research, 2009, 184, 405-415. | 2.1 | 29        |
| 39 | Coupled Land–Atmosphere Intraseasonal Variability of the West African Monsoon in a GCM. Journal of Climate, 2010, 23, 5557-5571.                                                                                                              | 3.2 | 29        |
| 40 | The effect of the Maddenâ€Julian Oscillation on station rainfall and river level in the Fly River system,<br>Papua New Guinea. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,926.                                             | 3.3 | 29        |
| 41 | Rossby wave dynamics of the North Pacific extra-tropical response to El Niño: importance of the basic state in coupled GCMs. Climate Dynamics, 2011, 37, 391-405.                                                                             | 3.8 | 28        |
| 42 | The Railroad Switch Effect of Seasonally Reversing Currents on the Bay of Bengal High alinity Core.<br>Geophysical Research Letters, 2019, 46, 6005-6014.                                                                                     | 4.0 | 24        |
| 43 | Validation of GPM IMERG Extreme Precipitation in the Maritime Continent by Station and Radar Data.<br>Earth and Space Science, 2021, 8, e2021EA001738.                                                                                        | 2.6 | 24        |
| 44 | A thermodynamical model for rainfall-triggered volcanic dome collapse. Geophysical Research<br>Letters, 2004, 31, n/a-n/a.                                                                                                                    | 4.0 | 23        |
| 45 | Phase locking between atmospheric convectively coupled equatorial Kelvin waves and the diurnal cycle of precipitation over the Maritime Continent. Geophysical Research Letters, 2016, 43, 8269-8276.                                         | 4.0 | 23        |
| 46 | Dynamical Ocean Forcing of the Madden–Julian Oscillation at Lead Times of up to Five Months. Journal of Climate, 2012, 25, 2824-2842.                                                                                                         | 3.2 | 21        |
| 47 | Seaglider observations of equatorial Indian Ocean Rossby waves associated with the Maddenâ€Julian<br>Oscillation. Journal of Geophysical Research: Oceans, 2014, 119, 3714-3731.                                                              | 2.6 | 21        |
| 48 | A Model of Rossby Waves Linked to Submonthly Convection over the Eastern Tropical Pacific. Journals of the Atmospheric Sciences, 2000, 57, 3785-3798.                                                                                         | 1.7 | 20        |
| 49 | Modulation of station rainfall over the western Pacific by the Madden-Julian oscillation. Geophysical<br>Research Letters, 2005, 32, n/a-n/a.                                                                                                 | 4.0 | 20        |
| 50 | Importance of oceanic resolution and mean state on the extra-tropical response to El Niño in a matrix<br>of coupled models. Climate Dynamics, 2013, 41, 1439-1452.                                                                            | 3.8 | 20        |
| 51 | Impact of atmospheric convectively coupled equatorial Kelvin waves on upper ocean variability.<br>Journal of Geophysical Research D: Atmospheres, 2016, 121, 2045-2059.                                                                       | 3.3 | 20        |
| 52 | The role of geomorphology, rainfall and soil moisture in the occurrence of landslides triggered by 2018 Typhoon Mangkhut in the Philippines. Natural Hazards and Earth System Sciences, 2021, 21, 1531-1550.                                  | 3.6 | 20        |
| 53 | Real-Time Extraction of the Madden–Julian Oscillation Using Empirical Mode Decomposition and<br>Statistical Forecasting with a VARMA Model. Journal of Climate, 2008, 21, 5318-5335.                                                          | 3.2 | 19        |
| 54 | The effects of rainfall on different components of seasonal fecundity in a tropical forest passerine.<br>Ibis, 2013, 155, 464-475.                                                                                                            | 1.9 | 19        |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Role of Tropical–Extratropical Interaction and Synoptic Variability in Maintaining the South<br>Pacific Convergence Zone in CMIP5 Models. Journal of Climate, 2015, 28, 3353-3374.                      | 3.2 | 19        |
| 56 | Intraseasonal Variability of Air–Sea Fluxes over the Bay of Bengal during the Southwest Monsoon.<br>Journal of Climate, 2018, 31, 7087-7109.                                                                | 3.2 | 17        |
| 57 | Equatorial Waves Triggering Extreme Rainfall and Floods in Southwest Sulawesi, Indonesia. Monthly<br>Weather Review, 2021, 149, 1381-1401.                                                                  | 1.4 | 17        |
| 58 | A local-to-large scale view of Maritime Continent rainfall: control by ENSO, MJO and equatorial waves. Journal of Climate, 2021, , 1-52.                                                                    | 3.2 | 17        |
| 59 | Observed Propagation and Structure of the 33-h Atmospheric Kelvin Wave. Journals of the Atmospheric Sciences, 2000, 57, 3488-3497.                                                                          | 1.7 | 15        |
| 60 | Realâ€ŧime localised forecasting of the Maddenâ€Julian Oscillation using neural network models.<br>Quarterly Journal of the Royal Meteorological Society, 2009, 135, 1471-1483.                             | 2.7 | 15        |
| 61 | Thermal structure of a gasâ€permeable lava dome and timescale separation in its response to perturbation. Journal of Geophysical Research, 2009, 114, .                                                     | 3.3 | 15        |
| 62 | Coupled Ocean–Atmosphere Interactions between the Madden–Julian Oscillation and Synoptic-Scale<br>Variability over the Warm Pool. Journal of Climate, 2005, 18, 2004-2020.                                  | 3.2 | 14        |
| 63 | Moisture transport by Atlantic tropical cyclones onto the North American continent. Climate Dynamics, 2017, 48, 3161-3182.                                                                                  | 3.8 | 14        |
| 64 | Injection of Oxygenated Persian Gulf Water Into the Southern Bay of Bengal. Geophysical Research<br>Letters, 2020, 47, e2020GL087773.                                                                       | 4.0 | 14        |
| 65 | Different atmospheric moisture divergence responses to extreme and moderate El Niños. Climate<br>Dynamics, 2016, 47, 393-410.                                                                               | 3.8 | 13        |
| 66 | Physical and Numerical Contributions to the Structure of Kelvin Wave-CISK Modes in a Spectral Transform Model. Journals of the Atmospheric Sciences, 1999, 56, 4050-4058.                                   | 1.7 | 11        |
| 67 | Impact of the Madden–Julian Oscillation on extreme precipitation over the western Maritime<br>Continent and Southeast Asia. Quarterly Journal of the Royal Meteorological Society, 2021, 147,<br>3434-3453. | 2.7 | 11        |
| 68 | The influence of diabatic heating in the South Pacific Convergence Zone on Rossby wave propagation and the mean flow. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 901-910.            | 2.7 | 10        |
| 69 | Thermally Induced Convective Circulation and Precipitation over an Isolated Volcano. Journals of the Atmospheric Sciences, 2016, 73, 1667-1686.                                                             | 1.7 | 10        |
| 70 | Triggering of a volcanic dome collapse by rainwater infiltration. Journal of Geophysical Research, 2010, 115, .                                                                                             | 3.3 | 9         |
| 71 | Dynamical propagation and growth mechanisms for convectively coupled equatorial Kelvin waves over the Indian Ocean. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 4310-4336.            | 2.7 | 7         |
|    |                                                                                                                                                                                                             |     |           |

72 Deployments in extreme conditions: Pushing the boundaries of Seaglider capabilities. , 2012, , .

5

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | North Atlantic Oscillation response to the Madden–Julian Oscillation in a coupled climate model.<br>Weather, 2022, 77, 201-205.                                                                          | 0.7 | 5         |
| 74 | Spatial and temporal variability of solar penetration depths in the Bay of Bengal and its impact on sea surface temperature (SST) during the summer monsoon. Ocean Science, 2021, 17, 871-890.           | 3.4 | 4         |
| 75 | Propagation mechanisms for the Madden-Julian Oscillation. Quarterly Journal of the Royal<br>Meteorological Society, 2000, 126, 2637-2651.                                                                | 2.7 | 4         |
| 76 | The effect of seasonally and spatially varying chlorophyll on Bay of Bengal surface ocean properties and the South Asian monsoon. Weather and Climate Dynamics, 2020, 1, 635-655.                        | 3.5 | 4         |
| 77 | Saturation front evolution for liquid infiltration into a gas filled porous medium with counter-current flow. European Journal of Mechanics, B/Fluids, 2014, 43, 202-215.                                | 2.5 | 2         |
| 78 | Subsurface Oceanic Structure Associated With Atmospheric Convectively Coupled Equatorial Kelvin<br>Waves in the Eastern Indian Ocean. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017171. | 2.6 | 2         |
| 79 | Development of convection along the SPCZ within a Madden-Julian oscillation. Quarterly Journal of the Royal Meteorological Society, 1996, 122, 669-688.                                                  | 2.7 | 2         |
| 80 | The Extratropical Linear Step Response to Tropical Precipitation Anomalies and Its Use in Constraining Projected Circulation Changes under Climate Warming. Journal of Climate, 2020, 33, 7217-7231.     | 3.2 | 1         |