James T Weedon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7416164/publications.pdf Version: 2024-02-01

IAMES T WEEDON

#	Article	IF	CITATIONS
1	Toward a functionâ€first framework to make soil microbial ecology predictive. Ecology, 2022, 103, e03594.	1.5	19
2	Arbuscular mycorrhizal inoculation and plant response strongly shape bacterial and eukaryotic soil community trajectories. Soil Biology and Biochemistry, 2022, 165, 108524.	4.2	6
3	Evolution of manipulative microbial behaviors in the rhizosphere. Evolutionary Applications, 2022, 15, 1521-1536.	1.5	15
4	Optimal growth temperature of Arctic soil bacterial communities increases under experimental warming. Global Change Biology, 2022, 28, 6050-6064.	4.2	16
5	Linking modern-day relicts to a Miocene mangrove community of western Amazonia. Palaeobiodiversity and Palaeoenvironments, 2021, 101, 123-140.	0.6	7
6	Evidence for strong environmental control on bacterial microbiomes of Antarctic springtails. Scientific Reports, 2021, 11, 2973.	1.6	5
7	The influence of soil chemistry on branched tetraether lipids in mid- and high latitude soils: Implications for brGDGT- based paleothermometry. Geochimica Et Cosmochimica Acta, 2021, 310, 95-112.	1.6	34
8	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
9	A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem. Nature Ecology and Evolution, 2020, 4, 101-108.	3.4	33
10	Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nature Geoscience, 2020, 13, 560-565.	5.4	72
11	Carbon and nitrogen cycling in Yedoma permafrost controlled by microbial functional limitations. Nature Geoscience, 2020, 13, 794-798.	5.4	45
12	Tissue type and location within forest together regulate decay trajectories of Abies faxoniana logs at early and mid-decay stage. Forest Ecology and Management, 2020, 475, 118411.	1.4	9
13	Meshes in mesocosms control solute and biota exchange in soils: A step towards disentangling (a)biotic impacts on the fate of thawing permafrost. Applied Soil Ecology, 2020, 151, 103537.	2.1	5
14	Patterns of local, intercontinental and interseasonal variation of soil bacterial and eukaryotic microbial communities. FEMS Microbiology Ecology, 2020, 96, .	1.3	19
15	Lipid biomarker temperature proxy responds to abrupt shift in the bacterial community composition in geothermally heated soils. Organic Geochemistry, 2019, 137, 103897.	0.9	78
16	Plant expansion drives bacteria and collembola communities under winter climate change in frost-affected tundra. Soil Biology and Biochemistry, 2019, 138, 107569.	4.2	14
17	Analysing continuous proportions in ecology and evolution: A practical introduction to beta and Dirichlet regression. Methods in Ecology and Evolution, 2019, 10, 1412-1430.	2.2	329
18	Effects of past and current drought on the composition and diversity of soil microbial communities. Soil Biology and Biochemistry, 2019, 131, 28-39.	4.2	141

JAMES T WEEDON

#	Article	IF	CITATIONS
19	Dynamics of metabolic responses to periods of combined heat and drought in Arabidopsis thaliana under ambient and elevated atmospheric CO2. Journal of Experimental Botany, 2018, 69, 2159-2170.	2.4	67
20	Prolonged exposure does not increase soil microbial community compositional response to warming along geothermal gradients. FEMS Microbiology Ecology, 2018, 94, .	1.3	29
21	Filtration artefacts in bacterial community composition can affect the outcome of dissolved organic matter biolability assays. Biogeosciences, 2018, 15, 7141-7154.	1.3	9
22	Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration. ISME Journal, 2018, 12, 2129-2141.	4.4	73
23	Compositional Stability of the Bacterial Community in a Climate-Sensitive Sub-Arctic Peatland. Frontiers in Microbiology, 2017, 8, 317.	1.5	20
24	The microbiome of <i>Folsomia candida</i> : an assessment of bacterial diversity in a <i>Wolbachia</i> -containing animal. FEMS Microbiology Ecology, 2015, 91, fiv128.	1.3	32
25	Decomposition trajectories of diverse litter types: a model selection analysis. Methods in Ecology and Evolution, 2014, 5, 173-182.	2.2	51
26	No effects of experimental warming but contrasting seasonal patterns for soil peptidase and glycosidase enzymes in a sub-arctic peat bog. Biogeochemistry, 2014, 117, 55-66.	1.7	26
27	Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Global Ecology and Biogeography, 2014, 23, 1046-1057.	2.7	136
28	Temperature sensitivity of peatland C and N cycling: Does substrate supply play a role?. Soil Biology and Biochemistry, 2013, 61, 109-120.	4.2	68
29	Interspecific differences in wood decay rates: insights from a new shortâ€ŧerm method to study longâ€ŧerm wood decomposition. Journal of Ecology, 2012, 100, 161-170.	1.9	136
30	Summer warming accelerates subâ€arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. Global Change Biology, 2012, 18, 138-150.	4.2	125
31	A frozen feast: thawing permafrost increases plantâ€available nitrogen in subarctic peatlands. Global Change Biology, 2012, 18, 1998-2007.	4.2	217
32	Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Molecular Ecology, 2012, 21, 2341-2353.	2.0	203
33	Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils. Biochemical Society Transactions, 2011, 39, 309-314.	1.6	39
34	Plant traits and wood fates across the globe: rotted, burned, or consumed?. Global Change Biology, 2009, 15, 2431-2449.	4.2	318
35	Global metaâ€analysis of wood decomposition rates: a role for trait variation among tree species?. Ecology Letters, 2009, 12, 45-56.	3.0	394
36	Desert shrubs have negative or neutral effects on annuals at two levels of water availability in arid lands of South Australia. Journal of Ecology, 2008, 96, 1230-1237.	1.9	25