List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/741561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams. International Journal of Engineering Science, 2018, 126, 53-67.	2.7	121
2	Exact solutions of inflected functionally graded nano-beams in integral elasticity. Composites Part B: Engineering, 2018, 142, 273-286.	5.9	97
3	A closed-form model for torsion of nanobeams with an enhanced nonlocal formulation. Composites Part B: Engineering, 2017, 108, 315-324.	5.9	83
4	Application of gradient elasticity to armchair carbon nanotubes: Size effects and constitutive parameters assessment. European Journal of Mechanics, A/Solids, 2017, 65, 1-13.	2.1	68
5	On functionally graded Timoshenko nonisothermal nanobeams. Composite Structures, 2016, 135, 286-296.	3.1	53
6	A gradient elasticity model of Bernoulli–Euler nanobeams in non-isothermal environments. European Journal of Mechanics, A/Solids, 2016, 55, 243-255.	2.1	51
7	Associative coupled thermoplasticity at finite strain with temperature-dependent material parameters. International Journal of Plasticity, 2004, 20, 1851-1874.	4.1	48
8	A higher-order Eringen model for Bernoulli–Euler nanobeams. Archive of Applied Mechanics, 2016, 86, 483-495.	1.2	46
9	On the thermomechanical coupling in finite strain plasticity theory with non-linear kinematic hardening by means of incremental energy minimization. International Journal of Solids and Structures, 2011, 48, 1120-1129.	1.3	44
10	Modified Nonlocal Strain Gradient Elasticity for Nano-Rods and Application to Carbon Nanotubes. Applied Sciences (Switzerland), 2019, 9, 514.	1.3	39
11	Martensitic stainless steel AISI 420—mechanical properties, creep and fracture toughness. Mechanics of Time-Dependent Materials, 2011, 15, 341-352.	2.3	38
12	AISI 316Ti (1.4571) steel—Mechanical, creep and fracture properties versus temperature. Journal of Constructional Steel Research, 2011, 67, 1948-1952.	1.7	36
13	On the thermomechanical coupling in dissipative materials: A variational approach for generalized standard materials. Journal of the Mechanics and Physics of Solids, 2015, 82, 218-234.	2.3	35
14	Creep behavior of high-strength low-alloy steel at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 499, 23-27.	2.6	33
15	Analysis of experimental data on the behavior of steel S275JR – Reliability of modern design. Materials & Design, 2013, 47, 497-504.	5.1	33
16	Comparison of material properties: Steel 20MnCr5 and similar steels. Journal of Constructional Steel Research, 2014, 95, 81-89.	1.7	32
17	Nonlocal integral thermoelasticity: A thermodynamic framework for functionally graded beams. Composite Structures, 2019, 225, 111104.	3.1	27
18	On thermomechanics of multilayered beams. International Journal of Engineering Science, 2020, 155, 103364.	2.7	25

#	Article	IF	CITATIONS
19	Structural Steel ASTM A709—Behavior at Uniaxial Tests Conducted at Lowered and Elevated Temperatures, Short-Time Creep Response, and Fracture Toughness Calculation. Journal of Engineering Mechanics - ASCE, 2010, 136, 1083-1089.	1.6	24
20	Tool Material Behavior at Elevated Temperatures. Materials and Manufacturing Processes, 2009, 24, 758-762.	2.7	23
21	Low cycle fatigue and mechanical properties of magnesium alloy Mg–6Zn–1Y–0.6Ce–0.6Zr at different temperatures. Materials & Design, 2014, 59, 287-295.	5.1	20
22	Estimation of material properties of nanocomposite structures. Meccanica, 2013, 48, 2209-2220.	1.2	18
23	Deformation behaviour and material properties of austenitic heat-resistant steel X15CrNiSi25-20 subjected to high temperatures and creep. Materials & Design, 2015, 69, 219-229.	5.1	18
24	Influence of Waviness and Vacancy Defects on Carbon Nanotubes Properties. Procedia Engineering, 2015, 100, 213-219.	1.2	18
25	Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel. Materials, 2016, 9, 298.	1.3	16
26	FE modelling of multi-walled carbon nanotubes. Estonian Journal of Engineering, 2009, 15, 77.	0.3	15
27	Behaviour of S 355JO steel subjected to uniaxial stress at lowered and elevated temperatures and creep. Bulletin of Materials Science, 2010, 33, 475-481.	0.8	15
28	50CrMo4 Steel-Determination of Mechanical Properties at Lowered and Elevated Temperatures, Creep Behavior, and Fracture Toughness Calculation. Journal of Engineering Materials and Technology, Transactions of the ASME, 2010, 132, .	0.8	13
29	Information relevant for the design of structure: Ferritic – Heat resistant high chromium steel X10CrAlSi25. Materials & Design, 2014, 63, 508-518.	5.1	13
30	Casting Microstructure Inspection Using Computer Vision: Dendrite Spacing in Aluminum Alloys. Metals, 2021, 11, 756.	1.0	13
31	Deep learning framework for carbon nanotubes: Mechanical properties and modeling strategies. Carbon, 2021, 184, 891-901.	5.4	13
32	A gradient model for torsion of nanobeams. Comptes Rendus - Mecanique, 2015, 343, 289-300.	2.1	12
33	A variational formulation for thermomechanically coupled low cycle fatigue at finite strains. International Journal of Solids and Structures, 2016, 100-101, 388-398.	1.3	12
34	Study of the Effects of High Temperatures on the Engineering Properties of Steel 42CrMo4. High Temperature Materials and Processes, 2015, 34, .	0.6	11
35	Experimental determination and prediction of the mechanical properties of steel 1.7225. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 600, 47-52.	2.6	10
36	Shear stress analysis in engineering beams using deplanation field of special 2-D finite elements. Meccanica, 2010, 45, 227-235.	1.2	9

#	Article	IF	CITATIONS
37	Testing and analysis of X39CrMo17-1 steel properties. Construction and Building Materials, 2013, 44, 293-301.	3.2	9
38	Analysis of the Mechanical Behavior, Creep Resistance and Uniaxial Fatigue Strength of Martensitic Steel X46Cr13. Materials, 2017, 10, 388.	1.3	8
39	NEMS Resonators for Detection of Chemical Warfare Agents Based on Graphene Sheet. Mathematical Problems in Engineering, 2019, 2019, 1-23.	0.6	8
40	Responses of Austenitic Stainless Steel American Iron and Steel Institute (AISI) 303 (1.4305) Subjected to Different Environmental Conditions. Journal of Testing and Evaluation, 2012, 40, 319-328.	0.4	8
41	Casting Defects Detection in Aluminum Alloys Using Deep Learning: a Classification Approach. International Journal of Metalcasting, 2023, 17, 386-398.	1.5	8
42	Elastic properties of nanocomposite materials: influence of carbon nanotube imperfections and interface bonding. Meccanica, 2017, 52, 1655-1668.	1.2	7
43	Nonlocal Mechanical Behavior of Layered Nanobeams. Symmetry, 2020, 12, 717.	1.1	7
44	Short-time creep, fatigue and mechanical properties of 42CrMo4 - Low alloy structural steel. Steel and Composite Structures, 2016, 22, 875-888.	1.3	7
45	Experimental determination of mechanical properties and short-time creep of AISI 304 stainless steel at elevated temperatures. International Journal of Minerals, Metallurgy and Materials, 2010, 17, 39-45.	2.4	6
46	Nonlinear kinematic hardening in coupled thermoplasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 499, 275-278.	2.6	5
47	A dissipation model for cyclic non-associative thermoplasticity at finite strains. Mechanics Research Communications, 2010, 37, 510-514.	1.0	5
48	Dynamic behavior of nanobeams under axial loads: Integral elasticity modeling and sizeâ€dependent eigenfrequencies assessment. Mathematical Methods in the Applied Sciences, 0, , .	1.2	5
49	On the influence of thermal stresses on eigenvalues of a circular saw blade. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231, 96-108.	1.1	4
50	Influence of imperfections on double walled carbon nanotube mechanical properties. Materials Today: Proceedings, 2018, 5, 17397-17403.	0.9	4
51	Analysis of Materials of Similar Mechanical Behavior and Similar Industrial Assignment. Procedia Manufacturing, 2019, 37, 207-213.	1.9	4
52	Stress-driven two-phase integral elasticity for Timoshenko curved beams. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 2021, 235, 52-63.	0.5	4
53	Mechanical testing of the behavior of steel 1.7147 at different temperatures. Steel and Composite Structures, 2014, 17, 549-560.	1.3	4
54	Comparison of Material Properties and Creep Behavior of 20MnCr5 and S275JR Steels. Materials Science Forum, 0, 762, 47-54.	0.3	3

MARKO CANADIJA

#	Article	IF	CITATIONS
55	Significance of experimental data in the design of structures made from 1.4057 steel. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 131-136.	0.4	3
56	Predicting stress–strain behavior of carbon nanotubes using neural networks. Neural Computing and Applications, 2022, 34, 17821-17836.	3.2	3
57	Behavior of HSLA A709 steel under different environmental conditions. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 897-902.	0.4	2
58	Effect of Elevated Temperatures on Behavior of Structural Steel 50CrMo4. High Temperature Materials and Processes, 2011, 30, .	0.6	2
59	Finite-element modelling and shear stress analysis of engineering structural elements. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008, 222, 861-872.	0.7	1
60	10.34: Creep properties of grade S275JR steel at high temperature. Ce/Papers, 2017, 1, 2806-2810.	0.1	1
61	Thermo-Mechanical Multiscale Modeling in Plasticity of Metals Using Small Strain Theory. Journal of Mechanics, 2018, 34, 579-589.	0.7	1
62	Imperfections in carbon nanotubes structure and their impact on the basic mechanical properties. IOP Conference Series: Materials Science and Engineering, 2018, 378, 012006.	0.3	1
63	Coupled Thermoplasticity with Temperature Dependent Properties. Journal of the Mechanical Behavior of Materials, 2004, 15, 419-426.	0.7	0
64	Loading and Responses of Austenitic Stainless Steels at Elevated Temperatures. High Temperature Materials and Processes, 2011, 30, .	0.6	0
65	Multiscale Modeling of Nanocomposite Structures with Defects. Key Engineering Materials, 0, 577-578, 141-144.	0.4	0
66	A multiscale approach to thermoplastic deformation. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 435-436.	0.2	0
67	Uniaxial Properties versus Temperature, Creep and Impact Energy of an Austenitic Steel. High Temperature Materials and Processes, 2017, 36, 135-143.	0.6	Ο
68	A Multiscale Framework for Thermoplasticity. Lecture Notes in Applied and Computational Mechanics, 2018, , 329-345.	2.0	0
69	Thermomechanics of Beam-Like Nanostructures. , 2018, , 179-231.		0
70	Equivalent beam model of single walled carbon nanotube with imperfections. IOP Conference Series: Materials Science and Engineering, 2019, 625, 012004.	0.3	0
71	Equivalent beam model of SWNT and DWNT with imperfections. Procedia Manufacturing, 2019, 37, 417-424.	1.9	0
72	Finite Elastoplasticity in Plane Strain Cold Rolling Problem. , 2002, , 425-432.		0

5

#	Article	IF	CITATIONS
73	Comparison of Both Creep Resistance and Material Properties of High-Strength Low-Alloy Steel and Stainless Steel. Journal of Testing and Evaluation, 2009, 37, 358-363.	0.4	0
74	Temperature-Dependent Thermoplasticity at Finite Strains. , 2014, , 4813-4826.		0
75	Comparison of Measured and Computed Contact Pressure Distribution in Cold Sheet Rolling Process. , 1999, , 337-344.		0
76	A manual calculation method for the check of the fire resistance of concrete columns subjected to a standard fire. , 2017, , 37-44.		0
77	THERMODYNAMICALLY CONSISTENT HOMOGENIZATION IN FINITE STRAIN THERMOPLASTICITY. International Journal for Multiscale Computational Engineering, 2019, 17, 99-120.	0.8	0
78	Reducing computational time for FEM postprocessing through the use of feedforward neural networks. , 0, , .		0