
Jonas G Croissant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7415263/publications.pdf Version: 2024-02-01

LONIAS C. CROISSANIT

#	Article	IF	CITATIONS
1	Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. Advanced Materials, 2017, 29, 1604634.	11.1	565
2	Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Advanced Healthcare Materials, 2018, 7, 1700831.	3.9	415
3	Syntheses and applications of periodic mesoporous organosilica nanoparticles. Nanoscale, 2015, 7, 20318-20334.	2.8	232
4	Biodegradable Ethyleneâ€Bis(Propyl)Disulfideâ€Based Periodic Mesoporous Organosilica Nanorods and Nanospheres for Efficient Inâ€Vitro Drug Delivery. Advanced Materials, 2014, 26, 6174-6180.	11.1	212
5	Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications. Nature Reviews Materials, 2020, 5, 886-909.	23.3	212
6	Nanovalve-Controlled Cargo Release Activated by Plasmonic Heating. Journal of the American Chemical Society, 2012, 134, 7628-7631.	6.6	211
7	Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics. Nature Communications, 2018, 9, 4551.	5.8	189
8	Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. Journal of Controlled Release, 2016, 229, 183-191.	4.8	149
9	Organosilica hybrid nanomaterials with a high organic content: syntheses and applications of silsesquioxanes. Nanoscale, 2016, 8, 19945-19972.	2.8	136
10	Twoâ€Photonâ€Triggered Drug Delivery via Fluorescent Nanovalves. Small, 2014, 10, 1752-1755.	5.2	106
11	Chick chorioallantoic membrane assay as an in vivo model to study the effect of nanoparticle-based anticancer drugs in ovarian cancer. Scientific Reports, 2018, 8, 8524.	1.6	101
12	SupraCells: Living Mammalian Cells Protected within Functional Modular Nanoparticleâ€Based Exoskeletons. Advanced Materials, 2019, 31, e1900545.	11.1	96
13	Twoâ€Photonâ€Triggered Drug Delivery in Cancer Cells Using Nanoimpellers. Angewandte Chemie - International Edition, 2013, 52, 13813-13817.	7.2	94
14	Metal–Organic Framework Nanoparticle-Assisted Cryopreservation of Red Blood Cells. Journal of the American Chemical Society, 2019, 141, 7789-7796.	6.6	82
15	Oneâ€Pot Construction of Multipodal Hybrid Periodic Mesoporous Organosilica Nanoparticles with Crystal‣ike Architectures. Advanced Materials, 2015, 27, 145-149.	11.1	81
16	Biodegradable Oxamideâ€Phenyleneâ€Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells. Chemistry - A European Journal, 2016, 22, 14806-14811.	1.7	81
17	Biodegradable Magnetic Silica@Iron Oxide Nanovectors with Ultra-Large Mesopores for High Protein Loading, Magnetothermal Release, and Delivery. Journal of Controlled Release, 2017, 259, 187-194.	4.8	81
18	Mixed Periodic Mesoporous Organosilica Nanoparticles and Core–Shell Systems, Application to in Vitro Two-Photon Imaging, Therapy, and Drug Delivery. Chemistry of Materials, 2014, 26, 7214-7220.	3.2	77

JONAS G CROISSANT

#	Article	IF	CITATIONS
19	Multifunctional Gold-Mesoporous Silica Nanocomposites for Enhanced Two-Photon Imaging and Therapy of Cancer Cells. Frontiers in Molecular Biosciences, 2016, 3, 1.	1.6	68
20	Enzymatically degradable hybrid organic–inorganic bridged silsesquioxane nanoparticles for in vitro imaging. Nanoscale, 2015, 7, 15046-15050.	2.8	67
21	Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components. ACS Nano, 2020, 14, 7847-7859.	7.3	67
22	Ultra-thin enzymatic liquid membrane for CO2 separation and capture. Nature Communications, 2018, 9, 990.	5.8	62
23	Engineering Hydrophobic Organosilica Nanoparticle-Doped Nanofibers for Enhanced and Fouling Resistant Membrane Distillation. ACS Applied Materials & Interfaces, 2017, 9, 1737-1745.	4.0	61
24	Electrostatic Assembly/Disassembly of Nanoscaled Colloidosomes for Lightâ€Triggered Cargo Release. Angewandte Chemie - International Edition, 2015, 54, 6804-6808.	7.2	60
25	Enhanced Two-Photon Fluorescence Imaging and Therapy of Cancer Cells via Gold@Bridged Silsesquioxane Nanoparticles. Small, 2015, 11, 295-299.	5.2	59
26	Synthesis of disulfide-based biodegradable bridged silsesquioxane nanoparticles for two-photon imaging and therapy of cancer cells. Chemical Communications, 2015, 51, 12324-12327.	2.2	58
27	Porphyrin-functionalized mesoporous organosilica nanoparticles for two-photon imaging of cancer cells and drug delivery. Journal of Materials Chemistry B, 2015, 3, 3681-3684.	2.9	55
28	Porous Porphyrinâ€Based Organosilica Nanoparticles for NIR Twoâ€Photon Photodynamic Therapy and Gene Delivery in Zebrafish. Advanced Functional Materials, 2018, 28, 1800235.	7.8	50
29	Disulfide-gated mesoporous silica nanoparticles designed for two-photon-triggered drug release and imaging. Journal of Materials Chemistry B, 2015, 3, 6456-6461.	2.9	49
30	Nanodiamond–PMO for two-photon PDT and drug delivery. Journal of Materials Chemistry B, 2016, 4, 5803-5808.	2.9	49
31	Modular Metal–Organic Polyhedra Superassembly: From Molecular‣evel Design to Targeted Drug Delivery. Advanced Materials, 2019, 31, e1806774.	11.1	48
32	Periodic Mesoporous Organosilica Nanoparticles with Controlled Morphologies and High Drug/Dye Loadings for Multicargo Delivery in Cancer Cells. Chemistry - A European Journal, 2016, 22, 9607-9615.	1.7	46
33	Photoresponsive Bridged Silsesquioxane Nanoparticles with Tunable Morphology for Light-Triggered Plasmid DNA Delivery. ACS Applied Materials & Interfaces, 2015, 7, 24993-24997.	4.0	42
34	Versatile heavy metals removal via magnetic mesoporous nanocontainers. RSC Advances, 2014, 4, 24838-24841.	1.7	38
35	Fluorescent periodic mesoporous organosilica nanoparticles dual-functionalized via click chemistry for two-photon photodynamic therapy in cells. Journal of Materials Chemistry B, 2016, 4, 5567-5574.	2.9	37
36	Twoâ€₽hotonâ€Excited Silica and Organosilica Nanoparticles for Spatiotemporal Cancer Treatment. Advanced Healthcare Materials, 2018, 7, e1701248.	3.9	36

JONAS G CROISSANT

#	Article	IF	CITATIONS
37	Synthesis and Characterization of Crystalline Structures Based on Phenylboronate Ligands Bound to Alkaline Earth Cations. Inorganic Chemistry, 2011, 50, 7802-7810.	1.9	35
38	Gemcitabine Delivery and Photodynamic Therapy in Cancer Cells via Porphyrinâ€Ethyleneâ€Based Periodic Mesoporous Organosilica Nanoparticles. ChemNanoMat, 2018, 4, 46-51.	1.5	31
39	Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcareâ€Associated Infections. Advanced Healthcare Materials, 2017, 6, 1601135.	3.9	25
40	Biodegradable Silica-Based Nanoparticles: Dissolution Kinetics and Selective Bond Cleavage. The Enzymes, 2018, 43, 181-214.	0.7	25
41	Cellular Internalization and Biocompatibility of Periodic Mesoporous Organosilica Nanoparticles with Tunable Morphologies: From Nanospheres to Nanowires. ChemPlusChem, 2017, 82, 631-637.	1.3	24
42	Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape. Nanomedicine, 2017, 12, 1421-1433.	1.7	21
43	Influence of the synthetic method on the properties of two-photon-sensitive mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2015, 3, 5182-5188.	2.9	20
44	Click approaches in sol–gel chemistry. Journal of Sol-Gel Science and Technology, 2014, 70, 245.	1.1	13
45	Photocracking Silica: Tuning the Plasmonic Photothermal Degradation of Mesoporous Silica Encapsulating Gold Nanoparticles for Cargo Release. Inorganics, 2019, 7, 72.	1.2	10
46	Engineering of large-pore lipid-coated mesoporous silica nanoparticles for dual cargo delivery to cancer cells. Journal of Sol-Gel Science and Technology, 2019, 89, 78-90.	1.1	7
47	Mesoporous Silica-Based Nanoparticles for Light-Actuated Biomedical Applications via Near-Infrared Two-Photon Absorption. The Enzymes, 2018, 43, 67-99.	0.7	5
48	Abstract LB-9: Light-controllable nano-drug delivery system with deep tissue penetrating ability for cancer therapy with two-photon-triggered nanoimpellers. , 2014, , .		3
49	Frontispiece: Biodegradable Oxamideâ€Phenyleneâ€Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells. Chemistry - A European Journal, 2016, 22, .	1.7	0
50	Cancer Treatment: Twoâ€Photonâ€Excited Silica and Organosilica Nanoparticles for Spatiotemporal Cancer Treatment (Adv. Healthcare Mater. 7/2018). Advanced Healthcare Materials, 2018, 7, 1870032.	3.9	0
51	Nanoparticle Vaccines for Immunotherapy: From Design to Clinical Trials. AAPS Advances in the Pharmaceutical Sciences Series, 2020, , 177-204.	0.2	О