Takashi Shimokawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/741515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduction of Lung Metastases in a Mouse Osteosarcoma Model Treated With Carbon Ions and Immune Checkpoint Inhibitors. International Journal of Radiation Oncology Biology Physics, 2021, 109, 594-602.	0.8	48
2	A Potential Renewed Use of Very Heavy Ions for Therapy: Neon Minibeam Radiation Therapy. Cancers, 2021, 13, 1356.	3.7	9
3	Preparation of an experimental mouse model lacking selenium-dependent glutathione peroxidase activities by feeding a selenium-deficient diet. Journal of Clinical Biochemistry and Nutrition, 2021, 68, 123-130.	1.4	2
4	In Reply to Elmali et al. International Journal of Radiation Oncology Biology Physics, 2021, 109, 1658-1659.	0.8	0
5	Off-tumor IDO1 target engagements determine the cancer-immune set point and predict the immunotherapeutic efficacy. , 2021, 9, e002616.		7
6	Effect of Three Types of Ion Beam Irradiation on Gerbera (Gerbera hybrida) In Vitro Shoots with Mutagenesis Efficiency. Plants, 2021, 10, 1480.	3.5	4
7	Protective Effects of p53 Regulatory Agents Against High-LET Radiation-Induced Injury in Mice. Frontiers in Public Health, 2020, 8, 601124.	2.7	4
8	Efficient mutation induction using heavy-ion beam irradiation and simple genomic screening with random primers in taro (Colocasia esculenta L. Schott). Scientia Horticulturae, 2020, 272, 109568.	3.6	6
9	Characterization of a Novel Murine Colon Carcinoma Subline with High-Metastatic Activity Established by In Vivo Selection Method. International Journal of Molecular Sciences, 2020, 21, 2829.	4.1	3
10	Difference in Acquired Radioresistance Induction Between Repeated Photon and Particle Irradiation. Frontiers in Oncology, 2019, 9, 1213.	2.8	29
11	8.2.9 Expansion of Heavy-Ion Beam Application —Ion Beam Breeding and Non-invasive Arrhythmia Treatment—. Radioisotopes, 2019, 68, 749-758.	0.2	0
12	Analysis of redox states of protic and aprotic solutions irradiated by low linear energy transfer carbon-ion beams using a 2,2-diphenyl-1-picrylhydrazyl radical. Organic and Biomolecular Chemistry, 2018, 16, 1272-1276.	2.8	7
13	Repeated photon and C-ion irradiations in vivo have different impact on alteration of tumor characteristics. Scientific Reports, 2018, 8, 1458.	3.3	10
14	Biological effects of ion beam irradiation on perennial gentian and apple. Plant Biotechnology, 2018, 35, 249-257.	1.0	9
15	Efficient protective activity of a planar catechin analogue against radiation-induced apoptosis in rat thymocytes. RSC Advances, 2018, 8, 10158-10162.	3.6	9
16	Combining Heavy-Ion Therapy with Immunotherapy: An Update on Recent Developments. International Journal of Particle Therapy, 2018, 5, 84-93.	1.8	22
17	Enhancement of mTOR signaling contributes to acquired Xâ€ray and Câ€ion resistance in mouse squamous carcinoma cell line. Cancer Science, 2017, 108, 2004-2010.	3.9	13
18	Intravenous dendritic cell administration enhances suppression of lung metastasis induced by carbon-ion irradiation. Journal of Radiation Research, 2017, 58, 446-455.	1.6	44

#	Article	IF	CITATIONS
19	The Immunoregulatory Potential of Particle Radiation in Cancer Therapy. Frontiers in Immunology, 2017, 8, 99.	4.8	52
20	Generating and grading the abscopal effect: proposal for comprehensive evaluation of combination immunoradiotherapy in mouse models. Translational Cancer Research, 2017, 6, S892-S899.	1.0	6
21	The Future of Combining Carbon-Ion Radiotherapy with Immunotherapy: Evidence and Progress in Mouse Models. International Journal of Particle Therapy, 2016, 3, 61-70.	1.8	37
22	A laser-plasma–produced soft X-ray laser at 89 eV generates DNA double-strand breaks in human cancer cells. Journal of Radiation Research, 2015, 56, 633-638.	1.6	1
23	Identification of novel nonâ€coding RNAâ€based negative feedback regulating the expression of the oncogenic transcription factor GLI1. Molecular Oncology, 2014, 8, 912-926.	4.6	33
24	Heterochromatin Domain Number Correlates with X-Ray and Carbon-Ion Radiation Resistance in Cancer Cells. Radiation Research, 2014, 182, 408.	1.5	15
25	Targeting the hedgehog signal transduction pathway at the level of GLI inhibits neuroblastoma cell growth <i>in vitro</i> and <i>in vivo</i> . International Journal of Cancer, 2013, 132, 1516-1524.	5.1	99
26	A feedback regulation between Kindlinâ€⊋ and GLI1 in prostate cancer cells. FEBS Letters, 2013, 587, 631-638.	2.8	24
27	High-Throughput Screening of Radioprotectors Using Rat Thymocytes. Analytical Chemistry, 2013, 85, 7650-7653.	6.5	9
28	RNA editing of the GLI1 transcription factor modulates the output of Hedgehog signaling. RNA Biology, 2013, 10, 321-333.	3.1	73
29	MicroRNA-203 functions as a tumor suppressor in basal cell carcinoma. Oncogenesis, 2012, 1, e3-e3.	4.9	87
30	Novel Mechanism of Action on Hedgehog Signaling by a Suppressor of Fused Carboxy Terminal Variant. PLoS ONE, 2012, 7, e37761.	2.5	9
31	Abstract 4725: Inhibition of the Hedgehog signaling pathway - a new target in treatment for children with neuroblastoma. , 2012, , .		0
32	Functional characterization of human Kindlin-2 core promoter identifies a key role of SP1 in Kindlin-2 transcriptional regulation. Cellular and Molecular Biology Letters, 2011, 16, 638-51.	7.0	1
33	Phylogenetic Analysis of Kindlins Suggests Subfunctionalization of an Ancestral Unduplicated Kindlin into Three Paralogs in Vertebrates. Evolutionary Bioinformatics, 2011, 7, EBO.S6179.	1.2	14
34	Reduction of Human Embryonal Rhabdomyosarcoma Tumor Growth by Inhibition of the Hedgehog Signaling Pathway. Genes and Cancer, 2010, 1, 941-951.	1.9	58
35	Genetic variations regulate alternative splicing in the 5' untranslated regions of the mouse glioma-associated oncogene 1, Gli1. BMC Molecular Biology, 2010, 11, 32.	3.0	19
36	DYRK1B-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS. Nature Structural and Molecular Biology, 2010, 17, 718-725.	8.2	141

#	Article	IF	CITATIONS
37	Novel Human Glioma-associated Oncogene 1 (GLI1) Splice Variants Reveal Distinct Mechanisms in the Terminal Transduction of the Hedgehog Signal. Journal of Biological Chemistry, 2008, 283, 14345-14354.	3.4	70
38	Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8455-8460.	7.1	726
39	Distinct roles of first exon variants of the tumor-suppressor Patched1 in Hedgehog signaling. Oncogene, 2007, 26, 4889-4896.	5.9	23
40	Identification of TOMM34, which shows elevated expression in the majority of human colon cancers, as a novel drug target. International Journal of Oncology, 2006, 29, 381.	3.3	17
41	Elevated expression of C10orf3 (chromosome 10 open reading frame 3) is involved in the growth of human colon tumor. Oncogene, 2006, 25, 480-486.	5.9	49
42	PTCH mutations: distribution and analyses. Human Mutation, 2006, 27, 215-219.	2.5	144
43	Inhibition of GLI1 gene activation by Patched1. Biochemical Journal, 2006, 394, 19-26.	3.7	51
44	Identification of TOMM34, which shows elevated expression in the majority of human colon cancers, as a novel drug target. International Journal of Oncology, 2006, 29, 381-6.	3.3	25
45	A novel oncoprotein RNF43 functions in an autocrine manner in colorectal cancer. International Journal of Oncology, 2004, 25, 1343.	3.3	18
46	Genes associated with liver metastasis of colon cancer, identified by genome-wide cDNA microarray. International Journal of Oncology, 2004, 24, 305.	3.3	37
47	A novel first exon of thePatched1gene is upregulated by Hedgehog signaling resulting in a protein with pathway inhibitory functions. FEBS Letters, 2004, 578, 157-162.	2.8	24
48	Involvement of the FGF18 gene in colorectal carcinogenesis, as a novel downstream target of the beta-catenin/T-cell factor complex. Cancer Research, 2003, 63, 6116-20.	0.9	124
49	Inhibition of poly(ADP-ribose) glycohydrolase activity by cyclic peptide antibiotics containing piperazic acid residues. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2002, 78, 15-17.	3.8	8
50	Isolation of HELAD1, a novel human helicase gene up-regulated in colorectal carcinomas. Oncogene, 2002, 21, 6387-6394.	5.9	32
51	Phylogenic distribution of poly(ADP-ribose) glycohydrolase and poly(ADP-ribose)-digesting phosphodiesterase. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2000, 76, 41-44.	3.8	2
52	Linkage Mapping of the Rat Poly(ADP-ribose) Glycohydrolase (Parg) Gene to Chromosome 16 Experimental Animals, 1999, 48, 217-218.	1.1	2