
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7415116/publications.pdf Version: 2024-02-01

FWA RADTNIK

#	Article	IF	CITATIONS
1	Merkel Cell Carcinoma from Molecular Pathology to Novel Therapies. International Journal of Molecular Sciences, 2021, 22, 6305.	1.8	20
2	TP53 in Biology and Treatment of Osteosarcoma. Cancers, 2021, 13, 4284.	1.7	26
3	Progressive External Ophthalmoplegia in Polish Patients—From Clinical Evaluation to Genetic Confirmation. Genes, 2021, 12, 54.	1.0	1
4	The Long-Term Outcomes of Intensive Combined Therapy of Adult Patients with Localised Synovial Sarcoma. Journal of Clinical Medicine, 2020, 9, 3129.	1.0	0
5	Neoadjuvant Treatment Options in Soft Tissue Sarcomas. Cancers, 2020, 12, 2061.	1.7	20
6	Molecular Biology of Osteosarcoma. Cancers, 2020, 12, 2130.	1.7	198
7	Mitochondrial genome variation in male LHON patients with the m.11778G > A mutation. Metabolic Brai Disease, 2020, 35, 1317-1327.	in 1.4	4
8	Testosterone increases apoptotic cell death and decreases mitophagy in Leber's hereditary optic neuropathy cells. Journal of Applied Genetics, 2020, 61, 195-203.	1.0	8
9	Targeted Therapy in Melanoma and Mechanisms of Resistance. International Journal of Molecular Sciences, 2020, 21, 4576.	1.8	107
10	Choosing The Right Animal Model for Renal Cancer Research. Translational Oncology, 2020, 13, 100745.	1.7	35
11	Drug resistance in papillary RCC: from putative mechanisms to clinical practicalities. Nature Reviews Urology, 2019, 16, 655-673.	1.9	24
12	Metastatic renal cell carcinoma cells growing in 3D on poly‑D‑lysine or laminin present a stem‑like phenotype and drug resistance. Oncology Reports, 2019, 42, 1878-1892.	1.2	12
13	Metastatic Tumor Burden and Loci as Predictors of First Line Sunitinib Treatment Efficacy in Patients with Renal Cell Carcinoma. Scientific Reports, 2019, 9, 7754.	1.6	10
14	The frequency of mitochondrial polymerase gamma related disorders in a large Polish population cohort. Mitochondrion, 2019, 47, 179-187.	1.6	4
15	Investigation of whole mitochondrial genome variation in normal tension glaucoma. Experimental Eye Research, 2019, 178, 186-197.	1.2	20
16	Mechanisms of melanoma resistance to treatment with BRAF and MEK inhibitors. Nowotwory, 2019, 69, 133-141.	0.1	2
17	Molecular biology of sarcoma. Oncology in Clinical Practice, 2019, 14, 307-330.	0.1	8
18	Analysis of BNIP3 and BNIP3L/Nix expression in cybrid cell lines harboring two LHON-associated mutations Acta Biochimica Polonica, 2019, 66, 427-435.	0.3	5

#	Article	IF	CITATIONS
19	Nuclear genes involved in mitochondrial diseases caused by instability of mitochondrial DNA. Journal of Applied Genetics, 2018, 59, 43-57.	1.0	62
20	New mtDNA Association Model, MutPred Variant Load, Suggests Individuals With Multiple Mildly Deleterious mtDNA Variants Are More Likely to Suffer From Atherosclerosis. Frontiers in Genetics, 2018, 9, 702.	1.1	12
21	Identification of the first in Poland CACNA1A gene mutation in familial hemiplegic migraine. Case report. Neurologia I Neurochirurgia Polska, 2017, 51, 184-189.	0.6	2
22	Mitochondrial DNA levels in Huntington disease leukocytes and dermal fibroblasts. Metabolic Brain Disease, 2017, 32, 1237-1247.	1.4	19
23	Fostering responsible research with genome editing technologies: a European perspective. Transgenic Research, 2017, 26, 709-713.	1.3	36
24	Investigating Leber's hereditary optic neuropathy: Cell models and future perspectives. Mitochondrion, 2017, 32, 19-26.	1.6	16
25	Effects of cell-cell crosstalk on gene expression patterns in a cell model of renal cell carcinoma lung metastasis. International Journal of Oncology, 2017, 52, 768-786.	1.4	5
26	Mitochondrial DNA in pediatric leukemia patients. Acta Biochimica Polonica, 2017, 64, 183-187.	0.3	15
27	Thyroid Hormones as Renal Cell Cancer Regulators. Journal of Signal Transduction, 2016, 2016, 1-8.	2.0	8
28	B26â€Differential mitochondrial DNA levels in HD patients depending on the cell type. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A18.1-A18.	0.9	0
29	The role of the cell–cell interactions in cancer progression. Journal of Cellular and Molecular Medicine, 2015, 19, 283-296.	1.6	89
30	Mitochondrial DNA Polymerase Î ³ Mutations and Their Implications in mtDNA Alterations in Colorectal Cancer. Annals of Human Genetics, 2015, 79, 320-328.	0.3	21
31	Review Biology of renal tumour cancer stem cells applied in medicine. Wspolczesna Onkologia, 2015, 1A, 44-51.	0.7	12
32	Current approaches in identification and isolation of human renal cell carcinoma cancer stem cells. Stem Cell Research and Therapy, 2015, 6, 178.	2.4	57
33	Yeast model analysis of novel polymerase gamma variants found in patients with autosomal recessive mitochondrial disease. Human Genetics, 2015, 134, 951-966.	1.8	17
34	The Role of Hypoxia and Cancer Stem Cells in Renal Cell Carcinoma Pathogenesis. Stem Cell Reviews and Reports, 2015, 11, 919-943.	5.6	72
35	Leber hereditary optic neuropathy — Historical report in comparison with the current knowledge. Gene, 2015, 555, 41-49.	1.0	16
36	l-Ergothioneine Protects Skin Cells against UV-Induced Damage—A Preliminary Study. Cosmetics, 2014, 1, 51-60.	1.5	28

#	Article	IF	CITATIONS
37	m.3635G>A mutation as a cause of Leber hereditary optic neuropathy. Journal of Clinical Pathology, 2014, 67, 639-641.	1.0	5
38	Mitochondrial encephalomyopathy: Towards diagnosis. A case report. Neurologia I Neurochirurgia Polska, 2014, 48, 76-80.	0.6	1
39	Resistance to tyrosine kinase inhibitors in clear cell renal cell carcinoma: From the patient's bed to molecular mechanisms. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 31-41.	3.3	73
40	Vitamin D receptor gene polymorphisms in breast and renal cancer: Current state and future approaches. International Journal of Oncology, 2014, 44, 349-363.	1.4	35
41	Molecular investigations of mitochondrial deletions: Evaluating the usefulness of different genetic tests. Gene, 2012, 506, 161-165.	1.0	10
42	Mitochondrial genotype and breast cancer predisposition. Oncology Reports, 2010, 24, 1521-34.	1.2	26
43	Mitochondrial NADH-dehydrogenase subunit 3 (ND3) polymorphism (A10398G) and sporadic breast cancer in Poland. Breast Cancer Research and Treatment, 2010, 121, 511-518.	1.1	70
44	Genotype–phenotype correlations in Leber hereditary optic neuropathy. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1119-1123.	0.5	38
45	Human mitochondrial RNA turnover caught in flagranti: involvement of hSuv3p helicase in RNA surveillance. Nucleic Acids Research, 2010, 38, 279-298.	6.5	111
46	Mitochondrial NADH-dehydrogenase polymorphisms as sporadic breast cancer risk factor. Oncology Reports, 2010, 23, 531-5.	1.2	17
47	Common mitochondrial polymorphisms as risk factor for endometrial cancer. International Archive of Medicine, 2009, 2, 33.	1.2	23
48	Breast cancer as a mitochondrial disorder (Review). Oncology Reports, 2009, 21, 845-51.	1.2	17
49	Mitochondrial cytopathies: clinical, morphological and genetic characteristics. Neurologia I Neurochirurgia Polska, 2009, 43, 216-27.	0.6	3
50	A family with 3460G>A and 11778G>A mutations and haplogroup analysis of Polish Leber hereditary optic neuropathy patients. Mitochondrion, 2008, 8, 383-388.	1.6	16
51	Interaction of human SUV3 RNA/DNA helicase with BLM helicase; loss of the SUV3 gene results in mouse embryonic lethality. Mechanisms of Ageing and Development, 2007, 128, 609-617.	2.2	29
52	Down-regulation of human RNA/DNA helicase SUV3 induces apoptosis by a caspase- and AIF-dependent pathway. Biology of the Cell, 2007, 99, 323-332.	0.7	34
53	G8363A mitochondrial DNA mutation is not a rare cause of Leigh syndrome - clinical, biochemical and pathological study of an affected child. Folia Neuropathologica, 2007, 45, 187-91.	0.5	9
54	Mitochondrial DNA mutations in human neoplasia. Journal of Applied Genetics, 2006, 47, 67-78.	1.0	75

#	Article	IF	CITATIONS
55	Differential stability of mitochondrial mRNA in HeLa cells. Acta Biochimica Polonica, 2006, 53, 157-68.	0.3	29
56	Nuclear and mitochondrial genome responses in HeLa cells treated with inhibitors of mitochondrial DNA expression. Acta Biochimica Polonica, 2006, 53, 485-95.	0.3	15
57	Clinicoprognostical features of endometrial cancer patients with somatic mtDNA mutations. Oncology Reports, 2006, 16, 1041-5.	1.2	7
58	Mitochondrial DNA in Tumors. Toxicology Mechanisms and Methods, 2004, 14, 85-90.	1.3	2
59	Mitochondrial DNA in Polish Centenarians. Toxicology Mechanisms and Methods, 2004, 14, 91-95.	1.3	1
60	Homoplasmic MELAS A3243G mtDNA mutation in a colon cancer sample. Mitochondrion, 2003, 3, 119-124.	1.6	34
61	Investigation of a pathogenic mtDNA microdeletion reveals a translation-dependent deadenylation decay pathway in human mitochondria. Human Molecular Genetics, 2003, 12, 2341-2348.	1.4	93
62	Leber hereditary optic neuropathya disease with a known molecular basis but a mysterious mechanism of pathology. Journal of Applied Genetics, 2003, 44, 529-38.	1.0	12
63	Localisation of the human hSuv3p helicase in the mitochondrial matrix and its preferential unwinding of dsDNA. Nucleic Acids Research, 2002, 30, 5074-5086.	6.5	81
64	Heteroplasmy analysis in the Polish patients with 11778A mutation responsible for Leber hereditary optic neuropathy. Acta Biochimica Polonica, 2002, 49, 257-62.	0.3	0
65	The TBP gene from Aspergillus nidulans -structure and expression in Saccharomyces cerevisiae. Microbiology (United Kingdom), 1997, 143, 1263-1270.	0.7	9
66	The S. cerevisiae nuclear gene SUV3 encoding a putative RNA helicase is necessary for the stability of mitochondrial transcripts containing multiple introns. Current Genetics, 1995, 28, 217-224.	0.8	43
67	The suv3 nuclear gene product is required for the in vivo processing of the yeast mitochondrial 21s rRNA transcripts containing the r1 intron. Current Genetics, 1995, 27, 234-238.	0.8	25
68	Unusual evolutionary conservation of 5S rRNA pseudogenes inAspergillus nidulans: Similarity of the DNA sequence associated with the pseudogenes with the mouse immunoglobulin switch region. Journal of Molecular Evolution, 1988, 28, 125-130.	0.8	8
69	Microheterogeneity in Aspergillus nidulans 5S rRNA genes. Current Genetics, 1987, 11, 571-573.	0.8	6
70	Aspergillus nidulans 5S rRNA genes and pseudogenes. Current Genetics, 1986, 10, 453-457.	0.8	14
71	Transcription of the rRNA gene cluster in Aspergillus nidulanss. Current Genetics, 1983, 7, 113-115.	0.8	4
72	Mitochondrial DNA from lupine: restriction analysis and cloning of fragments coding for tRNA. Gene, 1983, 22, 69-74.	1.0	10

#	Article	IF	CITATIONS
73	Mitochondrial transfer RNA genes from fungi (Aspergillus nidulans) and plants (Lupinus luteus) are transcribed in Xenopus laevis oocyte nuclei. Journal of Molecular Biology, 1983, 168, 439-444.	2.0	3
74	Organization of the ribosomal RNA gene cluster in Aspergillus nidulans. Gene, 1982, 17, 147-152.	1.0	57
75	Sensitive detection of tritium in Southern blot and plaque hybridizations. Analytical Biochemistry, 1981, 116, 237-240.	1.1	4
76	The cloning of Aspergillus nidulans mitochondrial DNA in Escherichia coli on plasmid pBR322. Molecular Genetics and Genomics, 1981, 182, 332-335.	2.4	11
77	Cloning and analysis of recombinant plasmids containing genes for Aspergillus nidulans 5 S rRNA. Current Genetics, 1981, 4, 173-176.	0.8	13
78	Molecular Cloning of the Restriction Fragments Derived from Double EcoRI/PstI Digestion of the Calf Satellite I DNA and Their Restriction Analysis. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1979, 34, 1151-1155.	0.6	1
79	Molecular cloning of the 4.2 Md EcoRI fragment of Aspergillus nidulans mitochondrial DNA. Molecular Genetics and Genomics, 1979, 171, 75-78.	2.4	14
80	A computer program for modelling a genetics experiment. ACM SIGCUE Outlook, 1976, 10, 21-24.	0.1	1
81	An easy way of obtaining <i>Aspergillus nidulans</i> haploids in the parasexual cycle using <i>N</i> -glycosyl polifungin. Genetical Research, 1975, 25, 249-252.	0.3	5