Kailong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7415061/publications.pdf

Version: 2024-02-01

35	1,661	18	32
papers	citations	h-index	g-index
35	35	35	1916 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Enhanced bifunctional catalytic activities of N-doped graphene by Ni in a 3D trimodal nanoporous nanotubular network and its ultralong cycling performance in Zn-air batteries. Journal of Energy Chemistry, 2022, 66, 466-473.	7.1	18
2	Eightâ€Component Nanoporous Highâ€Entropy Oxides with Low Ru Contents as Highâ€Performance Bifunctional Catalysts in Znâ€Air Batteries. Small, 2022, 18, e2107207.	5.2	40
3	Twelve-Component Free-Standing Nanoporous High-Entropy Alloys for Multifunctional Electrocatalysis., 2022, 4, 181-189.		50
4	Highly Strengthened and Toughened Zn–Li–Mn Alloys as Long ycling Life and Dendriteâ€Free Zn Anode for Aqueous Zincâ€lon Batteries. Small, 2022, 18, e2200787.	5.2	16
5	Gap Opening in Double-Sided Highly Hydrogenated Free-Standing Graphene. Nano Letters, 2022, 22, 2971-2977.	4.5	9
6	Inhibited Surface Diffusion of High-Entropy Nano-Alloys for the Preparation of 3D Nanoporous Graphene with High Amounts of Single Atom Dopants., 2022, 4, 978-986.		14
7	Theoretically Revealed and Experimentally Demonstrated Synergistic Electronic Interaction of CoFe Dual-Metal Sites on N-doped Carbon for Boosting Both Oxygen Reduction and Evolution Reactions. Nano Letters, 2022, 22, 3392-3399.	4.5	121
8	Machine Learning Prediction of Superconducting Critical Temperature through the Structural Descriptor. Journal of Physical Chemistry C, 2022, 126, 8922-8927.	1.5	16
9	Designing Ru-doped Zn ₃ V ₃ O ₈ bifunctional OER and HER catalysts through a unified computational and experimental approach. Nanoscale, 2021, 13, 17457-17464.	2.8	4
10	Acceleration of Electrochemical CO ₂ Reduction to Formate at the Sn/Reduced Graphene Oxide Interface. ACS Catalysis, 2021, 11, 3310-3318.	5 . 5	92
11	Inhibiting Surface Diffusion to Synthesize 3D Bicontinuous Nanoporous Nâ€Doped Carbon for Boosting Oxygen Reduction Reaction in Flexible Allâ€Solidâ€State Alâ€Air Batteries. Advanced Functional Materials, 2021, 31, 2103632.	7.8	19
12	Phase-Dependent Electrochemical CO ₂ Reduction Ability of NiSn Alloys for Formate Generation. ACS Applied Energy Materials, 2021, 4, 7122-7128.	2.5	13
13	Inhibiting Surface Diffusion to Synthesize 3D Bicontinuous Nanoporous Nâ€Doped Carbon for Boosting Oxygen Reduction Reaction in Flexible Allâ€Solidâ€State Alâ€Air Batteries (Adv. Funct. Mater. 38/2021). Advanced Functional Materials, 2021, 31, 2170284.	7.8	1
14	<i>In situ</i> coupling of Ag nanoparticles with high-entropy oxides as highly stable bifunctional catalysts for wearable Zn–Ag/Zn–air hybrid batteries. Nanoscale, 2021, 13, 16164-16171.	2.8	18
15	Catalytic activity of graphene-covered non-noble metals governed by proton penetration in electrochemical hydrogen evolution reaction. Nature Communications, 2021, 12, 203.	5.8	77
16	Deuterium Adsorption on Free-Standing Graphene. Nanomaterials, 2021, 11, 130.	1.9	14
17	Towards free-standing graphane: atomic hydrogen and deuterium bonding to nano-porous graphene. Nanotechnology, 2021, 32, 035707.	1.3	12
18	Corrosion-resistant non-noble metal electrodes for PEM-type water electrolyzer. International Journal of Hydrogen Energy, 2021, 46, 38603-38611.	3.8	17

#	Article	IF	CITATIONS
19	MOF Structure Engineering to Synthesize CoNC Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction. Small, 2021, 17, e2104684.	5.2	94
20	Effect of Graphene Encapsulation of NiMo Alloys on Oxygen Evolution Reaction. ACS Catalysis, 2020, 10, 792-799.	5.5	60
21	Phase-Dependent Reactivity of Nickel Molybdates for Electrocatalytic Urea Oxidation. ACS Applied Energy Materials, 2020, 3, 7535-7542.	2.5	41
22	Building a Reactive Armor Using S-Doped Graphene for Protecting Potassium Metal Anodes from Oxygen Crossover in K–O ₂ Batteries. ACS Energy Letters, 2020, 5, 1788-1793.	8.8	32
23	Anchoring Mo single atoms/clusters and N on edge-rich nanoporous holey graphene as bifunctional air electrode in Znâ^'air batteries. Applied Catalysis B: Environmental, 2020, 276, 119172.	10.8	79
24	Boosting electrochemical water splitting <i>via</i> ternary NiMoCo hybrid nanowire arrays. Journal of Materials Chemistry A, 2019, 7, 2156-2164.	5. 2	163
25	Damageâ€Free Solar Dewatering of Microâ€Algal Concentrates via Multifunctional Hierarchical Porous Graphene. Advanced Sustainable Systems, 2019, 3, 1900045.	2.7	3
26	Metal and Nonmetal Codoped 3D Nanoporous Graphene for Efficient Bifunctional Electrocatalysis and Rechargeable Zn–Air Batteries. Advanced Materials, 2019, 31, e1900843.	11.1	236
27	Chemical Dopants on Edge of Holey Graphene Accelerate Electrochemical Hydrogen Evolution Reaction. Advanced Science, 2019, 6, 1900119.	5.6	90
28	Topology and doping effects in three-dimensional nanoporous graphene. Carbon, 2018, 131, 258-265.	5.4	41
29	Cooperation between holey graphene and NiMo alloy for hydrogen evolution in an acidic electrolyte. ACS Catalysis, 2018, 8, 3579-3586.	5.5	98
30	Bottom-up Synthesis of Porous NiMo Alloy for Hydrogen Evolution Reaction. Metals, 2018, 8, 83.	1.0	29
31	Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production. Angewandte Chemie, 2018, 130, 13486-13491.	1.6	10
32	Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production. Angewandte Chemie - International Edition, 2018, 57, 13302-13307.	7.2	64
33	Graphene Layer Encapsulation of Non-Noble Metal Nanoparticles as Acid-Stable Hydrogen Evolution Catalysts. ACS Energy Letters, 2018, 3, 1539-1544.	8.8	57
34	Extracting Vanadium from Stone Coal by a Cyclic Alkaline Leaching Method. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 1342-1347.	1.0	12
35	2D MoS 2 Heterostructures on Epitaxial and Selfâ€Standing Graphene for Energy Storage: From Growth Mechanism to Application. Advanced Materials Technologies, 0, , 2100963.	3.0	1