Rajinikant Makwana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7415003/publications.pdf

Version: 2024-02-01

432 papers

7,764 citations

41 h-index 149686 56 g-index

434 all docs

434 docs citations

times ranked

434

3319 citing authors

#	Article	IF	CITATIONS
1	Overview of the JET results in support to ITER. Nuclear Fusion, 2017, 57, 102001.	3.5	150
2	Isotope effects on L-H threshold and confinement in tokamak plasmas. Plasma Physics and Controlled Fusion, 2018, 60, 014045.	2.1	98
3	Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET. Nuclear Materials and Energy, 2017, 12, 111-118.	1.3	92
4	Experimental Validation of a Filament Transport Model in Turbulent Magnetized Plasmas. Physical Review Letters, 2015, 115, 215002.	7.8	89
5	Overview of the JET preparation for deuterium–tritium operation with the ITER like-wall. Nuclear Fusion, 2019, 59, 112021.	3.5	87
6	Beryllium migration in JET ITER-like wall plasmas. Nuclear Fusion, 2015, 55, 063021.	3.5	83
7	Pedestal confinement and stability in JET-ILW ELMy H-modes. Nuclear Fusion, 2015, 55, 113031.	3.5	82
8	Core turbulent transport in tokamak plasmas: bridging theory and experiment with QuaLiKiz. Plasma Physics and Controlled Fusion, 2016, 58, 014036.	2.1	81
9	Improved confinement in JET high \hat{l}^2 plasmas with an ITER-like wall. Nuclear Fusion, 2015, 55, 053031.	3.5	79
10	Gyrokinetic analysis and simulation of pedestals to identify the culprits for energy losses using â€~fingerprints'. Nuclear Fusion, 2019, 59, 096001.	3.5	76
11	Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating. Nature Physics, 2017, 13, 973-978.	16.7	73
12	WALLDYN simulations of global impurity migration in JET and extrapolations to ITER. Nuclear Fusion, 2015, 55, 053015.	3.5	67
13	Stationary Zonal Flows during the Formation of the Edge Transport Barrier in the JET Tokamak. Physical Review Letters, 2016, 116, 065002.	7.8	64
14	Dual sightline measurements of MeV range deuterons with neutron and gamma-ray spectroscopy at JET. Nuclear Fusion, 2015, 55, 123026.	3.5	60
15	Erosion, screening, and migration of tungsten in the JET divertor. Nuclear Fusion, 2019, 59, 096035.	3.5	60
16	Runaway electron beam generation and mitigation during disruptions at JET-ILW. Nuclear Fusion, 2015, 55, 093013.	3.5	58
17	Melt damage to the JET ITER-like Wall and divertor. Physica Scripta, 2016, T167, 014070.	2.5	58
18	Erosion and deposition in the JET divertor during the first ILW campaign. Physica Scripta, 2016, T167, 014051.	2.5	58

#	Article	IF	CITATIONS
19	Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz. Plasma Physics and Controlled Fusion, 2017, 59, 124005.	2.1	57
20	Correlation of the tokamak H-mode density limit with ballooning stability at the separatrix. Nuclear Fusion, 2018, 58, 034001.	3 . 5	57
21	Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios. Nuclear Fusion, 2015, 55, 053007.	3.5	56
22	Influence of theE  ×  Bdrift in high recycling divertors on target asymmetries. Plasma Physics a Controlled Fusion, 2015, 57, 095002.	ind 2.1	56
23	Recent progress towards a quantitative description of filamentary SOL transport. Nuclear Fusion, 2017, 57, 056044.	3.5	56
24	Direct gyrokinetic comparison of pedestal transport in JET with carbon and ITER-like walls. Nuclear Fusion, 2019, 59, 086056.	3.5	53
25	Long-term fuel retention in JET ITER-like wall. Physica Scripta, 2016, T167, 014075.	2.5	52
26	MeV-range velocity-space tomography from gamma-ray and neutron emission spectrometry measurements at JET. Nuclear Fusion, 2017, 57, 056001.	3.5	52
27	Dust generation in tokamaks: Overview of beryllium and tungsten dust characterisation in JET with the ITER-like wall. Fusion Engineering and Design, 2018, 136, 579-586.	1.9	52
28	First dust study in JET with the ITER-like wall: sampling, analysis and classification. Nuclear Fusion, 2015, 55, 113033.	3.5	51
29	Scaling of the MHD perturbation amplitude required to trigger a disruption and predictions for ITER. Nuclear Fusion, 2016, 56, 026007.	3.5	51
30	Overview of the JET results. Nuclear Fusion, 2015, 55, 104001.	3.5	50
31	The impact of poloidal asymmetries on tungsten transport in the core of JET H-mode plasmas. Physics of Plasmas, 2015, 22, 055902.	1.9	49
32	Progress in understanding disruptions triggered by massive gas injection via 3D non-linear MHD modelling with JOREK. Plasma Physics and Controlled Fusion, 2017, 59, 014006.	2.1	47
33	Overview of fuel inventory in JET with the ITER-like wall. Nuclear Fusion, 2017, 57, 086045.	3.5	47
34	Overview of the JET ITER-like wall divertor. Nuclear Materials and Energy, 2017, 12, 499-505.	1.3	46
35	Scenario development for D–T operation at JET. Nuclear Fusion, 2019, 59, 076037.	3.5	46
36	Three-dimensional non-linear magnetohydrodynamic modeling of massive gas injection triggered disruptions in JET. Physics of Plasmas, 2015, 22, .	1.9	45

#	Article	IF	CITATIONS
37	Beryllium melting and erosion on the upper dump plates in JET during three ITER-like wall campaigns. Nuclear Fusion, 2019, 59, 086009.	3.5	45
38	lon target impact energy during Type I edge localized modes in JET ITER-like Wall. Plasma Physics and Controlled Fusion, 2015, 57, 085006.	2.1	44
39	Adaptive predictors based on probabilistic SVM for real time disruption mitigation on JET. Nuclear Fusion, 2018, 58, 056002.	3.5	44
40	Real-time control of divertor detachment in H-mode with impurity seeding using Langmuir probe feedback in JET-ITER-like wall. Plasma Physics and Controlled Fusion, 2017, 59, 045001.	2.1	43
41	Role of the pedestal position on the pedestal performance in AUG, JET-ILW and TCV and implications for ITER. Nuclear Fusion, 2019, 59, 076038.	3.5	43
42	Fusion yield measurements on JET and their calibration. Fusion Engineering and Design, 2014, 89, 2766-2775.	1.9	42
43	First neutron spectroscopy measurements with a pixelated diamond detector at JET. Review of Scientific Instruments, 2016, 87, 11D833.	1.3	42
44	Studies of dust from JET with the ITER-Like Wall: Composition and internal structure. Nuclear Materials and Energy, 2017, 12, 582-587.	1.3	41
45	Real-time-capable prediction of temperature and density profiles in a tokamak using RAPTOR and a first-principle-based transport model. Nuclear Fusion, 2018, 58, 096006.	3.5	41
46	Inferring divertor plasma properties from hydrogen Balmer and Paschen series spectroscopy in JET-ILW. Nuclear Fusion, 2015, 55, 123028.	3.5	40
47	JET and COMPASS asymmetrical disruptions. Nuclear Fusion, 2015, 55, 113006.	3.5	40
48	Integrated modelling of H-mode pedestal and confinement in JET-ILW. Plasma Physics and Controlled Fusion, 2018, 60, 014042.	2.1	40
49	Application of Gaussian process regression to plasma turbulent transport model validation via integrated modelling. Nuclear Fusion, 2019, 59, 056007.	3.5	39
50	Investigation into the formation of the scrape-off layer density shoulder in JET ITER-like wall L-mode and H-mode plasmas. Nuclear Fusion, 2018, 58, 056001.	3.5	38
51	Effect of the relative shift between the electron density and temperature pedestal position on the pedestal stability in JET-ILW and comparison with JET-C. Nuclear Fusion, 2018, 58, 056010.	3.5	38
52	Physics of Plasmas, 2015, 22, 056115.	1.9	37
53	The role of MHD in causing impurity peaking in JET hybrid plasmas. Nuclear Fusion, 2016, 56, 066002.	3.5	37
54	Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas. Plasma Physics and Controlled Fusion, 2016, 58, 074005.	2.1	36

#	Article	IF	CITATIONS
55	Understanding the physics of ELM pacing via vertical kicks in JET in view of ITER. Nuclear Fusion, 2016, 56, 026001.	3.5	36
56	First principles and integrated modelling achievements towards trustful fusion power predictions for JET and ITER. Nuclear Fusion, 2019, 59, 086047.	3 . 5	36
57	A machine learning approach based on generative topographic mapping for disruption prevention and avoidance at JET. Nuclear Fusion, 2019, 59, 106017.	3.5	36
58	Beryllium global erosion and deposition at JET-ILW simulated with ERO2.0. Nuclear Materials and Energy, 2019, 18, 331-338.	1.3	36
59	Neutron spectroscopy measurements of 14 MeV neutrons at unprecedented energy resolution and implications for deuterium–tritium fusion plasma diagnostics. Measurement Science and Technology, 2018, 29, 045502.	2.6	35
60	Deep learning for plasma tomography using the bolometer system at JET. Fusion Engineering and Design, 2017, 114, 18-25.	1.9	34
61	Dynamics and stability of divertor detachment in H-mode plasmas on JET. Plasma Physics and Controlled Fusion, 2017, 59, 095003.	2.1	34
62	Scenario development for the observation of alpha-driven instabilities in JET DT plasmas. Nuclear Fusion, 2018, 58, 082005.	3.5	34
63	Impact of ICRF on the scrape-off layer and on plasma wall interactions: From present experiments to fusion reactor. Nuclear Materials and Energy, 2019, 18, 131-140.	1.3	34
64	Discriminating the trapped electron modes contribution in density fluctuation spectra. Nuclear Fusion, 2015, 55, 093021.	3.5	33
65	Transport analysis and modelling of the evolution of hollow density profiles plasmas in JET and implication for ITER. Nuclear Fusion, 2015, 55, 123001.	3 . 5	33
66	Challenges in the extrapolation from DD to DT plasmas: experimental analysis and theory based predictions for JET-DT. Plasma Physics and Controlled Fusion, 2017, 59, 014023.	2.1	33
67	Fast H isotope and impurity mixing in ion-temperature-gradient turbulence. Nuclear Fusion, 2018, 58, 076028.	3.5	33
68	Current Research into Applications of Tomography for Fusion Diagnostics. Journal of Fusion Energy, 2019, 38, 458-466.	1.2	33
69	Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios. Plasma Physics and Controlled Fusion, 2017, 59, 055001.	2.1	32
70	Experimental estimation of tungsten impurity sputtering due to Type I ELMs in JET-ITER-like wall using pedestal electron cyclotron emission and target Langmuir probe measurements. Physica Scripta, 2016, T167, 014005.	2.5	31
71	Gamma-ray spectroscopy at MHz counting rates with a compact LaBr3 detector and silicon photomultipliers for fusion plasma applications. Review of Scientific Instruments, 2016, 87, 11E714.	1.3	31
72	Fast-ion energy resolution by one-step reaction gamma-ray spectrometry. Nuclear Fusion, 2016, 56, 046009.	3 . 5	31

#	Article	IF	CITATIONS
73	A First Analysis of JET Plasma Profile-Based Indicators for Disruption Prediction and Avoidance. IEEE Transactions on Plasma Science, 2018, 46, 2691-2698.	1.3	31
74	Isotope identity experiments in JET-ILW with H and D L-mode plasmas. Nuclear Fusion, 2019, 59, 076028.	3.5	31
75	Velocity-space sensitivities of neutron emission spectrometers at the tokamaks JET and ASDEX Upgrade in deuterium plasmas. Review of Scientific Instruments, 2017, 88, 073506.	1.3	30
76	Studies of the pedestal structure and inter-ELM pedestal evolution in JET with the ITER-like wall. Nuclear Fusion, 2017, 57, 116012.	3.5	30
77	Benchmark experiments on neutron streaming through JET Torus Hall penetrations. Nuclear Fusion, 2015, 55, 053028.	3.5	29
78	Axisymmetric oscillations at L–H transitions in JET: M-mode. Nuclear Fusion, 2017, 57, 022021.	3.5	29
79	Non-Maxwellian fast particle effects in gyrokinetic GENE simulations. Physics of Plasmas, 2018, 25, .	1.9	29
80	3D non-linear MHD simulation of the MHD response and density increase as a result of shattered pellet injection. Nuclear Fusion, 2018, 58, 126025.	3.5	29
81	Modelling of JET hybrid plasmas with emphasis on performance of combined ICRF and NBI heating. Nuclear Fusion, 2018, 58, 106037.	3.5	29
82	Plasma confinement at JET. Plasma Physics and Controlled Fusion, 2016, 58, 014034.	2.1	28
83	Assessment of erosion, deposition and fuel retention in the JET-ILW divertor from ion beam analysis data. Nuclear Materials and Energy, 2017, 12, 559-563.	1.3	28
84	Characterisation of the deuterium recycling at the W divertor target plates in JET during steady-state plasma conditions and ELMs. Physica Scripta, 2016, T167, 014076.	2.5	27
85	Gyrokinetic study of turbulent convection of heavy impurities in tokamak plasmas at comparable ion and electron heat fluxes. Nuclear Fusion, 2017, 57, 022009.	3.5	27
86	Assessment of SOLPS5.0 divertor solutions with drifts and currents against L-mode experiments in ASDEX Upgrade and JET. Plasma Physics and Controlled Fusion, 2017, 59, 035003.	2.1	27
87	First ERO2.0 modeling of Be erosion and non-local transport in JET ITER-like wall. Physica Scripta, 2017, T170, 014018.	2.5	27
88	Erosion and deposition in the JET divertor during the second ITER-like wall campaign. Physica Scripta, 2017, T170, 014058.	2.5	27
89	An Analytical Expression for the Electric Field and Particle Tracing in Modelling of Be Erosion Experiments at the JET ITERâ€ike Wall. Contributions To Plasma Physics, 2016, 56, 640-645.	1.1	26
90	Technological exploitation of Deuterium–Tritium operations at JET in support of ITER design, operation and safety. Fusion Engineering and Design, 2016, 109-111, 278-285.	1.9	26

#	Article	IF	Citations
91	Experience on divertor fuel retention after two ITER-Like Wall campaigns. Physica Scripta, 2017, T170, 014063.	2.5	26
92	Dimensionless scalings of confinement, heat transport and pedestal stability in JET-ILW and comparison with JET-C. Plasma Physics and Controlled Fusion, 2017, 59, 014014.	2.1	26
93	Test particles dynamics in the JOREK 3D non-linear MHD code and application to electron transport in a disruption simulation. Nuclear Fusion, 2018, 58, 016043.	3.5	26
94	Assessment of the baseline scenario at $i>q95~3$ for ITER. Nuclear Fusion, 2018, 58, 126010.	3 . 5	26
95	W transport and accumulation control in the termination phase of JET H-mode discharges and implications for ITER. Plasma Physics and Controlled Fusion, 2018, 60, 074008.	2.1	26
96	Self-consistent pedestal prediction for JET-ILW in preparation of the DT campaign. Physics of Plasmas, 2019, 26, .	1.9	26
97	Runaway electron beam control. Plasma Physics and Controlled Fusion, 2019, 61, 014036.	2.1	26
98	Fast ion energy distribution from third harmonic radio frequency heating measured with a single crystal diamond detector at the Joint European Torus. Review of Scientific Instruments, 2015, 86, 103501.	1.3	25
99	Impact of divertor geometry on radiative divertor performance in JET H-mode plasmas. Plasma Physics and Controlled Fusion, 2016, 58, 045011.	2.1	25
100	Plasma impact on diagnostic mirrors in JET. Nuclear Materials and Energy, 2017, 12, 506-512.	1.3	25
101	Recent progress in the quantitative validation of JOREK simulations of ELMs in JET. Nuclear Fusion, 2017, 57, 076006.	3.5	25
102	Fuel inventory and deposition in castellated structures in JET-ILW. Nuclear Fusion, 2017, 57, 066027.	3.5	25
103	Maximum likelihood bolometric tomography for the determination of the uncertainties in the radiation emission on JET TOKAMAK. Review of Scientific Instruments, 2018, 89, 053504.	1.3	25
104	Material migration and fuel retention studies during the JET carbon divertor campaigns. Fusion Engineering and Design, 2019, 138, 78-108.	1.9	25
105	The â€~neutron deficit' in the JET tokamak. Nuclear Fusion, 2017, 57, 076029.	3.5	25
106	Performance of the prototype LaBr3 spectrometer developed for the JET gamma-ray camera upgrade. Review of Scientific Instruments, 2016, 87, 11E717.	1.3	24
107	Experimental investigation of geodesic acoustic modes on JET using Doppler backscattering. Nuclear Fusion, 2016, 56, 106026.	3.5	24
108	Impact of divertor geometry on H-mode confinement in the JET metallic wall. Nuclear Fusion, 2017, 57, 086025.	3 . 5	24

#	Article	IF	CITATIONS
109	Modelling of tungsten erosion and deposition in the divertor of JET-ILW in comparison to experimental findings. Nuclear Materials and Energy, 2019, 18, 239-244.	1.3	24
110	Asymmetric toroidal eddy currents (ATEC) to explain sideways forces at JET. Nuclear Fusion, 2016, 56, 106010.	3.5	23
111	Sawtooth pacing with on-axis ICRH modulation in JET-ILW. Nuclear Fusion, 2017, 57, 036027.	3.5	23
112	High fusion performance at high <i>T</i> _i / <i>T</i> _e in JET-ILW baseline plasmas with high NBI heating power and low gas puffing. Nuclear Fusion, 2018, 58, 036020.	3 . 5	23
113	Instrumentation for the upgrade to the JET core charge-exchange spectrometers. Review of Scientific Instruments, 2018, 89, 10D113.	1.3	23
114	Impact of electron-scale turbulence and multi-scale interactions in the JET tokamak. Nuclear Fusion, 2018, 58, 124003.	3.5	23
115	Measuring fast ions in fusion plasmas with neutron diagnostics at JET. Plasma Physics and Controlled Fusion, 2019, 61, 014027.	2.1	23
116	Determination of isotope ratio in the divertor of JET-ILW by high-resolution H <i>α</i> spectroscopy: H–D experiment and implications for D–T experiment. Nuclear Fusion, 2019, 59, 046011.	3 . 5	23
117	Deposition of impurity metals during campaigns with the JET ITER-like Wall. Nuclear Materials and Energy, 2019, 19, 218-224.	1.3	23
118	Determination of tungsten and molybdenum concentrations from an x-ray range spectrum in JET with the ITER-like wall configuration. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 144023.	1.5	22
119	Gyrokinetic study of turbulence suppression in a JET-ILW power scan. Plasma Physics and Controlled Fusion, 2016, 58, 115005.	2.1	22
120	Neutron emission spectroscopy of DT plasmas at enhanced energy resolution with diamond detectors. Review of Scientific Instruments, 2016, 87, 11D822.	1.3	22
121	Global and pedestal confinement and pedestal structure in dimensionless collisionality scans of low-triangularity H-mode plasmas in JET-ILW. Nuclear Fusion, 2017, 57, 016012.	3.5	22
122	Fine metal dust particles on the wall probes from JET-ILW. Physica Scripta, 2017, T170, 014038.	2.5	22
123	Full-Pulse Tomographic Reconstruction with Deep Neural Networks. Fusion Science and Technology, 2018, 74, 47-56.	1.1	22
124	14 MeV calibration of JET neutron detectorsâ€"phase 1: calibration and characterization of the neutron source. Nuclear Fusion, 2018, 58, 026012.	3 . 5	22
125	First principles of modelling the stabilization of microturbulence by fast ions. Nuclear Fusion, 2018, 58, 082024.	3.5	22
126	First principle integrated modeling of multi-channel transport including Tungsten in JET. Nuclear Fusion, 2018, 58, 096003.	3.5	22

#	Article	IF	Citations
127	Role of fast ion pressure in the isotope effect in JET L-mode plasmas. Nuclear Fusion, 2019, 59, 096030.	3.5	22
128	Preparation and Neutronic Studies of Tungsten Carbide Composite. Fusion Science and Technology, 2014, 65, 241-247.	1.1	21
129	Radiation asymmetries during the thermal quench of massive gas injection disruptions in JET. Nuclear Fusion, 2015, 55, 123027.	3.5	21
130	Experimental evaluation of stable long term operation of semiconductor magnetic sensors at ITER relevant environment. Nuclear Fusion, 2015, 55, 083006.	3.5	21
131	The upgraded JET gamma-ray cameras based on high resolution/high count rate compact spectrometers. Review of Scientific Instruments, 2018, 89, 101116.	1.3	21
132	Electron acceleration in a JET disruption simulation. Nuclear Fusion, 2018, 58, 106022.	3.5	21
133	Non-linear MHD simulations of ELMs in JET and quantitative comparisons to experiments. Plasma Physics and Controlled Fusion, 2016, 58, 014026.	2.1	20
134	Deuterium trapping and release in JET ITER-like wall divertor tiles. Physica Scripta, 2016, T167, 014074.	2.5	20
135	ITER oriented neutronics benchmark experiments on neutron streaming and shutdown dose rate at JET. Fusion Engineering and Design, 2017, 123, 171-176.	1.9	20
136	Simulation of neutral gas flow in the JET sub-divertor. Fusion Engineering and Design, 2017, 121, 13-21.	1.9	20
137	Transient induced tungsten melting at the Joint European Torus (JET). Physica Scripta, 2017, T170, 014013.	2.5	20
138	Multi-machine analysis of termination scenarios with comparison to simulations of controlled shutdown of ITER discharges. Nuclear Fusion, 2018, 58, 026019.	3.5	20
139	Identification of BeO and BeOxDy in melted zones of the JET Be limiter tiles: Raman study using comparison with laboratory samples. Nuclear Materials and Energy, 2018, 17, 295-301.	1.3	20
140	Tritium retention characteristics in dust particles in JET with ITER-like wall. Nuclear Materials and Energy, 2018, 17, 279-283.	1.3	20
141	Equilibrium reconstruction at JET using Stokes model for polarimetry. Nuclear Fusion, 2018, 58, 106032.	3.5	20
142	Observation of enhanced ion particle transport in mixed H/D isotope plasmas on JET. Nuclear Fusion, 2018, 58, 076022.	3.5	20
143	14 MeV calibration of JET neutron detectors—phase 2: in-vessel calibration. Nuclear Fusion, 2018, 58, 106016.	3.5	20
144	Neutronics experiments and analyses in preparation of DT operations at JET. Fusion Engineering and Design, 2016, 109-111, 895-905.	1.9	19

#	Article	IF	Citations
145	JET experiments with tritium and deuterium–tritium mixtures. Fusion Engineering and Design, 2016, 109-111, 925-936. Measurements of the cross sections of the <mml:math< td=""><td>1.9</td><td>19</td></mml:math<>	1.9	19
146	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mmultiscripts><mml:mi mathvariant="normal">W</mml:mi><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mn>186</mml:mn>,W<mml:mo>,W<mml:mprescripts></mml:mprescripts><mml:none< td=""><td>l:m8><mi< td=""><td>ml:Mi>γ</td></mi<></td></mml:none<></mml:mo></mml:mmultiscripts></mml:mrow>	l:m8> <mi< td=""><td>ml:Mi>γ</td></mi<>	ml:Mi>γ
147	/> <mml:mn>187</mml:mn> <mml:mo>,</mml:mo> <mml:mo> \hat{A}</mml:mo> <r .<="" 2017,="" 24,="" and="" control="" fields="" impact="" in="" mode="" non-axisymmetric="" of="" on="" physics="" plasmas,="" poloidal="" spectra="" td="" the="" tokamaks.="" toroidal=""><td>nml:mrov 1.9</td><td>v. 19</td></r>	nml:mrov 1.9	v. 19
148	Mitigation of divertor heat loads by strike point sweeping in high power JET discharges. Physica Scripta, 2017, T170, 014040.	2.5	19
149	Neutral pathways and heat flux widths in vertical- and horizontal-target EDGE2D-EIRENE simulations of JET. Nuclear Fusion, 2018, 58, 096029.	3.5	19
150	Thermal desorption spectrometry of beryllium plasma facing tiles exposed in the JET tokamak. Fusion Engineering and Design, 2018, 133, 135-141.	1.9	19
151	L to H mode transition: parametric dependencies of the temperature threshold. Nuclear Fusion, 2015, 55, 073015.	3.5	18
152	High performance detectors for upgraded gamma ray diagnostics for JET DT campaigns. Physica Scripta, 2016, 91, 064003.	2.5	18
153	Response function of single crystal synthetic diamond detectors to 1-4 MeV neutrons for spectroscopy of D plasmas. Review of Scientific Instruments, 2016, 87, 11D823.	1.3	18
154	Nitrogen retention mechanisms in tokamaks with beryllium and tungsten plasma-facing surfaces. Physica Scripta, 2016, T167, 014077.	2.5	18
155	Experience of handling beryllium, tritium and activated components from JET ITER like wall. Physica Scripta, 2016, T167, 014057.	2.5	18
156	The role and application of ion beam analysis for studies of plasma-facing components in controlled fusion devices. Nuclear Instruments & Methods in Physics Research B, 2016, 371, 4-11.	1.4	18
157	Application of transfer entropy to causality detection and synchronization experiments in tokamaks. Nuclear Fusion, 2016, 56, 026006.	3.5	18
158	Energy balance in JET. Nuclear Materials and Energy, 2017, 12, 227-233.	1.3	18
159	A multi-machine scaling of halo current rotation. Nuclear Fusion, 2018, 58, 016050.	3.5	18
160	Investigation of deuterium trapping and release in the JET ITER-like wall divertor using TDS and TMAP. Nuclear Materials and Energy, 2019, 19, 166-178.	1.3	18
161	Systematic analysis of the neutron-induced reaction cross sections for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>Mo</mml:mi><mml:mi>nat</mml:mi></mml:mmultiscripts></mml:math> isotopes within 10â€"20 MeV. Physical Review C. 2019. 99	cripts 2.9	18
162	Analysis of deposited layers with deuterium and impurity elements on samples from the divertor of JET with ITER-like wall. Journal of Nuclear Materials, 2019, 516, 202-213.	2.7	18

#	Article	IF	Citations
163	Benchmarking the GENE and GYRO codes through the relative roles of electromagnetic and $\langle i \rangle E < i \rangle \hat{a} \in \mathbb{A} - \hat{a} \in \mathbb{A} - \hat{a} \in \mathbb{A} = \mathbb{A} = \mathbb{A} + \mathbb{A} = \mathbb{A} = \mathbb{A} = \mathbb{A} + \mathbb{A} = A$	C an trolled	17
164	Improved ERO modelling for spectroscopy of physically and chemically assisted eroded beryllium from the JET-ILW. Nuclear Materials and Energy, 2016, 9, 604-609.	1.3	17
165	Plasma edge and plasma-wall interaction modelling: Lessons learned from metallic devices. Nuclear Materials and Energy, 2017, 12, 3-17.	1.3	17
166	Investigation and plasma cleaning of first mirrors coated with relevant ITER contaminants: beryllium and tungsten. Nuclear Fusion, 2017, 57, 086019.	3.5	17
167	Calibration of neutron detectors on the Joint European Torus. Review of Scientific Instruments, 2017, 88, 103505.	1.3	17
168	Versatile fusion source integrator AFSI for fast ion and neutron studies in fusion devices. Nuclear Fusion, 2018, 58, 016023.	3.5	17
169	High-resolution tungsten spectroscopy relevant to the diagnostic of high-temperature tokamak plasmas. Physical Review A, 2018, 97, .	2.5	17
170	Analysis of ELM stability with extended MHD models in JET, JT-60U and future JT-60SA tokamak plasmas. Plasma Physics and Controlled Fusion, 2018, 60, 014032.	2.1	17
171	Effects of nitrogen seeding on core ion thermal transport in JET ILW L-mode plasmas. Nuclear Fusion, 2018, 58, 026028.	3.5	17
172	Synthetic spectra of BeH, BeD and BeT for emission modeling in JET plasmas. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 185701.	1.5	17
173	Activation of ITER materials in JET: nuclear characterisation experiments for the long-term irradiation station. Nuclear Fusion, 2018, 58, 096013.	3.5	17
174	Possible influence of near SOL plasma on the H-mode power threshold. Nuclear Materials and Energy, 2017, 12, 273-277.	1.3	16
175	Axisymmetric global Alfv \tilde{A} eigenmodes within the ellipticity-induced frequency gap in the Joint European Torus. Physics of Plasmas, 2017, 24, .	1.9	16
176	Dependence of the turbulent particle flux on hydrogen isotopes induced by collisionality. Physics of Plasmas, 2018, 25, 082517.	1.9	16
177	Review of recent experimental and modeling advances in the understanding of lower hybrid current drive in ITER-relevant regimes. Nuclear Fusion, 2018, 58, 095003.	3.5	16
178	Determination of tungsten sources in the JET-ILW divertor by spectroscopic imaging in the presence of a strong plasma continuum. Nuclear Materials and Energy, 2019, 18, 118-124.	1.3	16
179	Bayesian Integrated Data Analysis of Fast-Ion Measurements by Velocity-Space Tomography. Fusion Science and Technology, 2018, 74, 23-36.	1.1	15
180	Correlation of surface chemical states with hydrogen isotope retention in divertor tiles of JET with ITER-Like Wall. Fusion Engineering and Design, 2018, 132, 24-28.	1.9	15

#	Article	IF	CITATIONS
181	A power-balance model of the density limit in fusion plasmas: application to the L-mode tokamak. Nuclear Fusion, 2019, 59, 126011.	3.5	15
182	Improved ERO modelling of beryllium erosion at ITER upper first wall panel using JET-ILW and PISCES-B experience. Nuclear Materials and Energy, 2019, 19, 510-515.	1.3	15
183	The effect of beryllium oxide on retention in JET ITER-like wall tiles. Nuclear Materials and Energy, 2019, 19, 346-351.	1.3	15
184	Fast ion synergistic effects in JET high performance pulses. Nuclear Fusion, 2019, 59, 056005.	3.5	15
185	Deep deuterium retention and Be/W mixing at tungsten coated surfaces in the JET divertor. Physica Scripta, 2016, T167, 014061.	2.5	14
186	How to assess the efficiency of synchronization experiments in tokamaks. Nuclear Fusion, 2016, 56, 076008.	3.5	14
187	Deposition in the inner and outer corners of the JET divertor with carbon wall and metallic ITER-like wall. Physica Scripta, 2016, T167, 014052.	2.5	14
188	Raman microscopy investigation of beryllium materials. Physica Scripta, 2016, T167, 014027.	2.5	14
189	Beryllium film deposition in cavity samples in remote areas of the JET divertor during the 2011–2012 ITER-like wall campaign. Nuclear Materials and Energy, 2017, 12, 548-552.	1.3	14
190	Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall. Fusion Engineering and Design, 2017, 116, 1-4.	1.9	14
191	Structure, tritium depth profile and desorption from †plasma-facing†beryllium materials of ITER-Like-Wall at JET. Nuclear Materials and Energy, 2017, 12, 642-647.	1.3	14
192	3D simulations of gas puff effects on edge plasma and ICRF coupling in JET. Nuclear Fusion, 2017, 57, 056042.	3.5	14
193	Sub-millisecond electron density profile measurement at the JET tokamak with the fast lithium beam emission spectroscopy system. Review of Scientific Instruments, 2018, 89, 043509.	1.3	14
194	High Z neoclassical transport: Application and limitation of analytical formulae for modelling JET experimental parameters. Physics of Plasmas, 2018, 25, .	1.9	14
195	Pedestal evolution physics in low triangularity JET tokamak discharges with ITER-like wall. Nuclear Fusion, 2018, 58, 016021.	3.5	14
196	On the Use of Transfer Entropy to Investigate the Time Horizon of Causal Influences between Signals. Entropy, 2018, 20, 627.	2.2	14
197	Real-time protection of the JET ITER-like wall based on near infrared imaging diagnostic systems. Nuclear Fusion, 2018, 58, 106021.	3.5	14
198	Observations and modelling of ion cyclotron emission observed in JET plasmas using a sub-harmonic arc detection system during ion cyclotron resonance heating. Nuclear Fusion, 2018, 58, 096020.	3.5	14

#	Article	IF	CITATIONS
199	Ion cyclotron resonance heating scenarios for DEMO. Nuclear Fusion, 2019, 59, 106051.	3.5	14
200	Multi-layered shielding materials for high energy space radiation. Radiation Physics and Chemistry, 2022, 197, 110131.	2.8	14
201	Tritium breeding mock-up experiments containing lithium titanate ceramic pebbles and lead irradiated with DT neutrons. Fusion Engineering and Design, 2015, 95, 50-58.	1.9	13
202	Radiation damage and nuclear heating studies in selected functional materials during the JET DT campaign. Fusion Engineering and Design, 2016, 109-111, 1011-1015.	1.9	13
203	High power neon seeded JET discharges: Experiments and simulations. Nuclear Materials and Energy, 2017, 12, 882-886.	1.3	13
204	Comparative H-mode density limit studies in JET and AUG. Nuclear Materials and Energy, 2017, 12, 100-110.	1.3	13
205	Deuterium retention in the divertor tiles of JET ITER-Like wall. Nuclear Materials and Energy, 2017, 12, 655-661.	1.3	13
206	Analyses of microstructure, composition and retention of hydrogen isotopes in divertor tiles of JET with the ITER-like wall. Physica Scripta, 2017, T170, 014031.	2.5	13
207	Light impurity transport in JET ILW L-mode plasmas. Nuclear Fusion, 2018, 58, 036009.	3.5	13
208	Determination of 2D poloidal maps of the intrinsic W density for transport studies in JET-ILW. Review of Scientific Instruments, 2018, 89, 113501.	1.3	13
209	Gyrokinetic modeling of impurity peaking in JET H-mode plasmas. Physics of Plasmas, 2017, 24, .	1.9	13
210	Trapped electron mode driven electron heat transport in JET: experimental investigation and gyro-kinetic theory validation. Nuclear Fusion, 2015, 55, 113016.	3.5	12
211	Diagnostic application of magnetic islands rotation in JET. Nuclear Fusion, 2016, 56, 076004.	3.5	12
212	Studies of Be migration in the JET tokamak using AMS with 10Be marker. Nuclear Instruments & Methods in Physics Research B, 2016, 371, 370-375.	1.4	12
213	Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 847, 199-204.	1.6	12
214	A tool to support the construction of reliable disruption databases. Fusion Engineering and Design, 2017, 125, 139-153.	1.9	12
215	Erosion at the inner wall of JET during the discharge campaign 2013–2014. Nuclear Materials and Energy, 2017, 11, 20-24.	1.3	12
216	Assessment of divertor heat load with and without external magnetic perturbation. Nuclear Fusion, 2017, 57, 066045.	3.5	12

#	Article	IF	Citations
217	Metallic mirrors for plasma diagnosis in current and future reactors: tests for ITER and DEMO. Physica Scripta, 2017, T170, 014061.	2.5	12
218	Equilibrium reconstruction in an iron core tokamak using a deterministic magnetisation model. Computer Physics Communications, 2018, 223, 1-17.	7.5	12
219	Comparison of runaway electron generation parameters in small, medium-sized and large tokamaks—A survey of experiments in COMPASS, TCV, ASDEX-Upgrade and JET. Nuclear Fusion, 2018, 58, 016014.	3.5	12
220	Assessment of the strength of kinetic effects of parallel electron transport in the SOL and divertor of JET high radiative H-mode plasmas using EDGE2D-EIRENE and KIPP codes. Plasma Physics and Controlled Fusion, 2018, 60, 115011.	2.1	12
221	Development of a new compact gamma-ray spectrometer optimised for runaway electron measurements. Review of Scientific Instruments, 2018, 89, 10134.	1.3	12
222	A new mechanism for increasing density peaking in tokamaks: improvement of the inward particle pinch with edge $\langle i\rangle E\langle i\rangle \tilde{A}-\langle i\rangle B\langle i\rangle$ shearing. Plasma Physics and Controlled Fusion, 2019, 61, 104002.	2.1	12
223	Multiphysics approach to plasma neutron source modelling at the JET tokamak. Nuclear Fusion, 2019, 59, 096020.	3.5	12
224	Dynamic modelling of local fuel inventory and desorption in the whole tokamak vacuum vessel for auto-consistent plasma-wall interaction simulations. Nuclear Materials and Energy, 2019, 19, 550-557.	1.3	12
225	Diagnostic of fast-ion energy spectra and densities in magnetized plasmas. Journal of Instrumentation, 2019, 14, C05019-C05019.	1.2	12
226	On the interpretation of high-resolution x-ray spectra from JET with an ITER-like wall. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 144028.	1.5	11
227	Neutron streaming along ducts and labyrinths at the JET biological shielding: Effect of concrete composition. Radiation Physics and Chemistry, 2015, 116, 359-364.	2.8	11
228	Progress in reducing ICRF-specific impurity release in ASDEX upgrade and JET. Nuclear Materials and Energy, 2017, 12, 1194-1198.	1.3	11
229	Upgrade of the tangential gamma-ray spectrometer beam-line for JET DT experiments. Fusion Engineering and Design, 2017, 123, 749-753.	1.9	11
230	Numerical analysis of ELM stability with rotation and ion diamagnetic drift effects in JET. Nuclear Fusion, 2017, 57, 126001.	3.5	11
231	Activation measurements in support of the 14 MeV neutron calibration of JET neutron monitors. Fusion Engineering and Design, 2017, 125, 50-56.	1.9	11
232	Statistical validation of predictive TRANSP simulations of baseline discharges in preparation for extrapolation to JET D–T. Nuclear Fusion, 2017, 57, 066032.	3.5	11
233	Comparison of JET AVDE disruption data with M3D simulations and implications for ITER. Physics of Plasmas, 2017, 24, .	1.9	11
234	TAE stability calculations compared to TAE antenna results in JET. Nuclear Fusion, 2018, 58, 082007.	3.5	11

#	Article	IF	CITATIONS
235	EDGE2D-EIRENE simulations of the influence of isotope effects and anomalous transport coefficients on near scrape-off layer radial electric field. Plasma Physics and Controlled Fusion, 2019, 61, 075010.	2.1	11
236	Investigation of deuterium trapping and release in the JET divertor during the third ILW campaign using TDS. Nuclear Materials and Energy, 2019, 19, 300-306.	1.3	11
237	Long-lived coupled peeling ballooning modes preceding ELMs on JET. Nuclear Fusion, 2019, 59, 056004.	3.5	11
238	Effect of Hydrogen ion beam irradiation onto the FIR reflectivity of pulsed laser deposited mirror like Tungsten films. Journal of Nuclear Materials, 2012, 423, 53-60.	2.7	10
239	An FPGA-based bolometer for the MAST-U Super-X divertor. Review of Scientific Instruments, 2016, 87, 11E721.	1.3	10
240	Bayesian modelling of the emission spectrum of the Joint European Torus Lithium Beam Emission Spectroscopy system. Review of Scientific Instruments, 2016, 87, 023501.	1.3	10
241	Extending helium partial pressure measurement technology to JET DTE2 and ITER. Review of Scientific Instruments, 2016, 87, 11D442.	1.3	10
242	Advanced design of the Mechanical Tritium Pumping System for JET DTE2. Fusion Engineering and Design, 2016, 109-111, 359-364.	1.9	10
243	Tritium distributions on tungsten and carbon tiles used in the JET divertor. Physica Scripta, 2016, T167, 014009.	2.5	10
244	In situ wavelength calibration of the edge CXS spectrometers on JET. Review of Scientific Instruments, 2016, 87, 11E525.	1.3	10
245	Technical preparations for the in-vessel 14 MeV neutron calibration at JET. Fusion Engineering and Design, 2017, 117, 107-114.	1.9	10
246	Status of ITER material activation experiments at JET. Fusion Engineering and Design, 2017, 124, 1150-1155.	1.9	10
247	On efficiency and interpretation of sawteeth pacing with on-axis ICRH modulation in JET. Nuclear Fusion, 2017, 57, 126057.	3.5	10
248	Simulation of JET ITER-Like Wall pulses at high neon seeding rate. Nuclear Fusion, 2017, 57, 126021.	3.5	10
249	The isotope effect on divertor conditions and neutral pumping in horizontal divertor configurations in JET-ILW Ohmic plasmas. Nuclear Materials and Energy, 2017, 12, 791-797.	1.3	10
250	An analytical expression for ion velocities at the wall including the sheath electric field and surface biasing for erosion modeling at JET ILW. Nuclear Materials and Energy, 2017, 12, 341-345.	1.3	10
251	On the potential of ruled-based machine learning for disruption prediction on JET. Fusion Engineering and Design, 2018, 130, 62-68. Excitation functions of the <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.9</td><td>10</td></mml:math>	1.9	10
252	altimg="si1.gif" overflow="scroll"> <mml:mi>p</mml:mi> <mml:mo>+</mml:mo> <mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">Nb</mml:mi></mml:mrow><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mrow><mml:mn>93</mml:mn></mml:mrow></mml:mmultiscripts> reaction in the energy range 10â€"22 MeV. Nuclear Physics A, 2018, 978, 160-172.	1.5	10

#	Article	IF	CITATIONS
253	Tritium distributions on W-coated divertor tiles used in the third JET ITER-like wall campaign. Nuclear Materials and Energy, 2019, 18, 258-261.	1.3	10
254	Study of the triton-burnup process in different JET scenarios using neutron monitor based on CVD diamond. Review of Scientific Instruments, 2016, 87, 11D835.	1.3	9
255	JET diagnostic enhancements in preparation for DT operations. Review of Scientific Instruments, 2016, 87, 11D443.	1.3	9
256	Hardware architecture of the data acquisition and processing system for the JET Neutron Camera Upgrade (NCU) project. Fusion Engineering and Design, 2017, 123, 873-876.	1.9	9
257	The effect of the isotope on the H-mode density limit. Nuclear Fusion, 2017, 57, 086007.	3.5	9
258	The emissivity of W coatings deposited on carbon materials for fusion applications. Fusion Engineering and Design, 2017, 114, 192-195.	1.9	9
259	Response of the imaging cameras to hard radiation during JET operation. Fusion Engineering and Design, 2017, 123, 669-673.	1.9	9
260	ERO modeling and sensitivity analysis of locally enhanced beryllium erosion by magnetically connected antennas. Nuclear Fusion, 2018, 58, 016046.	3.5	9
261	Modelling of the neutron production in a mixed beam DT neutron generator. Fusion Engineering and Design, 2018, 136, 1089-1093.	1.9	9
262	Generation of a plasma neutron source for Monte Carlo neutron transport calculations in the tokamak JET. Fusion Engineering and Design, 2018, 136, 1047-1051.	1.9	9
263	Analysis of plasma termination in the JET hybrid scenario. Nuclear Fusion, 2018, 58, 076027.	3.5	9
264	The software and hardware architecture of the real-time protection of in-vessel components in JET-ILW. Nuclear Fusion, 2019, 59, 076016.	3.5	9
265	Measurement of the 58Ni(n, p)58Co and 58Ni(n, 2n)57Ni reaction cross-sections for fast neutron energies up to 18 MeV. European Physical Journal A, 2019, 55, 1.	2.5	9
266	Full-orbit and drift calculations of fusion product losses due to explosive fishbones on JET. Nuclear Fusion, 2019, 59, 016004.	3.5	9
267	Plasma isotopic changeover experiments in JET under carbon and ITER-like wall conditions. Nuclear Fusion, 2015, 55, 043021.	3.5	8
268	Characterization of a diamond detector to be used as neutron yield monitor during the in-vessel calibration of JET neutron detectors in preparation of the DT experiment. Fusion Engineering and Design, 2016, 106, 93-98.	1.9	8
269	On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection. Nuclear Fusion, 2017, 57, 016027.	3.5	8
270	The near infrared imaging system for the real-time protection of the JET ITER-like wall. Physica Scripta, 2017, T170, 014027.	2.5	8

#	Article	IF	Citations
271	Characterization of a compact LaBr ₃ (Ce) detector with Silicon photomultipliers at high 14 MeV neutron fluxes. Journal of Instrumentation, 2017, 12, C10007-C10007.	1.2	8
272	Analysis of possible improvement of the plasma performance in JET due to the inward spatial channelling of fast-ion energy. Nuclear Fusion, 2018, 58, 076012.	3.5	8
273	On the universality of power laws for tokamak plasma predictions. Plasma Physics and Controlled Fusion, 2018, 60, 025028.	2.1	8
274	On the role of finite grid extent in SOLPS-ITER edge plasma simulations for JET H-mode discharges with metallic wall. Nuclear Materials and Energy, 2018, 17, 174-181.	1.3	8
275	Neutron emission spectroscopy of D plasmas at JET with a compact liquid scintillating neutron spectrometer. Review of Scientific Instruments, 2018, 89, 101113.	1.3	8
276	A locked mode indicator for disruption prediction on JET and ASDEX upgrade. Fusion Engineering and Design, 2019, 138, 254-266.	1.9	8
277	Simulation of neutron emission in neutral beam injection heated plasmas with the real-time code RABBIT. Nuclear Fusion, 2019, 59, 086002.	3.5	8
278	An assessment of nitrogen concentrations from spectroscopic measurements in the JET and ASDEX upgrade divertor. Nuclear Materials and Energy, 2019, 18, 147-152.	1.3	8
279	Turbulent transport analysis of JET H-mode and hybrid plasmas using QuaLiKiz and Trapped Gyro Landau Fluid. Plasma Physics and Controlled Fusion, 2015, 57, 035003.	2.1	7
280	Edge profile analysis of Joint European Torus (JET) Thomson scattering data: Quantifying the systematic error due to edge localised mode synchronisation. Review of Scientific Instruments, 2016, 87, 013507.	1.3	7
281	Comparison of dust transport modelling codes in a tokamak plasma. Physics of Plasmas, 2016, 23, 102506.	1.9	7
282	Real-time control of ELM and sawtooth frequencies: similarities and differences. Nuclear Fusion, 2016, 56, 016008.	3.5	7
283	JET experience on managing radioactive waste and implications for ITER. Fusion Engineering and Design, 2016, 109-111, 979-985.	1.9	7
284	Advances in understanding and utilising ELM control in JET. Plasma Physics and Controlled Fusion, 2016, 58, 014017.	2.1	7
285	Commissioning and first results of the reinstated JET ICRF ILA. Fusion Engineering and Design, 2017, 123, 285-288.	1.9	7
286	The preparation of the Shutdown Dose Rate experiment for the next JET Deuterium-Tritium campaign. Fusion Engineering and Design, 2017, 123, 1039-1043.	1.9	7
287	Expanding the role of impurity spectroscopy for investigating the physics of high-Z dissipative divertors. Nuclear Materials and Energy, 2017, 12, 91-99.	1.3	7
288	Main chamber wall plasma loads in JET-ITER-like wall at high radiated fraction. Nuclear Materials and Energy, 2017, 12, 234-240.	1.3	7

#	Article	IF	CITATIONS
289	Real time control developments at JET in preparation for deuterium-tritium operation. Fusion Engineering and Design, 2017, 123, 535-540.	1.9	7
290	Synthetic neutron camera and spectrometer in JET based on AFSI-ASCOT simulations. Journal of Instrumentation, 2017, 12, C09010-C09010.	1.2	7
291	Detection of Causal Relations in Time Series Affected by Noise in Tokamaks Using Geodesic Distance on Gaussian Manifolds. Entropy, 2017, 19, 569.	2.2	7
292	Testing of tritium breeder blanket activation foil spectrometer during JET operations. Fusion Engineering and Design, 2018, 136, 258-264.	1.9	7
293	MHD spectroscopy of JET plasmas with pellets via Alfvén eigenmodes. Nuclear Fusion, 2018, 58, 082008.	3.5	7
294	JET diagnostic enhancements testing and commissioning in preparation for DT scientific campaigns. Review of Scientific Instruments, 2018, 89, 10K119.	1.3	7
295	Molecular ND Band Spectroscopy in the Divertor Region of Nitrogen Seeded JET Discharges. Journal of Physics: Conference Series, 2018, 959, 012009.	0.4	7
296	TLD calibration for neutron fluence measurements at JET fusion facility. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 904, 202-213.	1.6	7
297	Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET. Nuclear Materials and Energy, 2019, 19, 397-402.	1.3	7
298	Comparison of the structure of the plasma-facing surface and tritium accumulation in beryllium tiles from JET ILW campaigns 2011–2012 and 2013–2014. Nuclear Materials and Energy, 2019, 19, 131-136.	1.3	7
299	Gyrokinetic simulations of toroidal Alfv \tilde{A} ©n eigenmodes excited by energetic ions and external antennas on the Joint European Torus. Nuclear Fusion, 2019, 59, 026008.	3.5	7
300	Improved neutron activation dosimetry for fusion. Fusion Engineering and Design, 2019, 139, 109-114.	1.9	7
301	Novel concrete compositions for \hat{l}^3 -rays and neutron shielding using WC and B4C. Results in Materials, 2021, 10, 100177.	1.8	7
302	Comparative analysis of core heat transport of JET high density H-mode plasmas in carbon wall and ITER-like wall. Plasma Physics and Controlled Fusion, 2015, 57, 065002.	2.1	6
303	Integrated core–SOL–divertor modelling for ITER including impurity: effect of tungsten on fusion performance in H-mode and hybrid scenario. Nuclear Fusion, 2015, 55, 053032.	3.5	6
304	Simulating the nitrogen migration in Be/W tokamaks with WallDYN. Physica Scripta, 2016, T167, 014079.	2.5	6
305	ITER-like antenna capacitors voltage probes: Circuit/electromagnetic calculations and calibrations. Review of Scientific Instruments, 2016, 87, 104705.	1.3	6
306	Sparse representation of signals: from astrophysics to real-time data analysis for fusion plasmas and system optimization analysis for ITER and TCV. Plasma Physics and Controlled Fusion, 2016, 58, 123001.	2.1	6

#	Article	IF	Citations
307	Evaluation of reconstruction errors and identification of artefacts for JET gamma and neutron tomography. Review of Scientific Instruments, 2016, 87, 013502.	1.3	6
308	COREDIV and SOLPS Numerical Simulations of the Nitrogen Seeded JET ILW Lâ€mode Discharges. Contributions To Plasma Physics, 2016, 56, 760-765.	1.1	6
309	Effect of PFC Recycling Conditions on JET Pedestal Density. Contributions To Plasma Physics, 2016, 56, 754-759.	1.1	6
310	Global optimization driven by genetic algorithms for disruption predictors based on APODIS architecture. Fusion Engineering and Design, 2016, 112, 1014-1018.	1.9	6
311	Investigation on the erosion/deposition processes in the ITER-like wall divertor at JET using glow discharge optical emission spectrometry technique. Physica Scripta, 2016, T167, 014049.	2.5	6
312	Impact of the JET ITER-like wall on H-mode plasma fueling. Nuclear Fusion, 2017, 57, 066024.	3.5	6
313	The effect of lower hybrid waves on JET plasma rotation. Nuclear Fusion, 2017, 57, 034002.	3.5	6
314	Evaluation of the plasma hydrogen isotope content by residual gas analysis at JET and AUG. Physica Scripta, 2017, T170, 014021.	2.5	6
315	Quartz micro-balance results of pulse-resolved erosion/deposition in the JET-ILW divertor. Nuclear Materials and Energy, 2017, 12, 478-482.	1.3	6
316	Analysis of activation and damage of ITER material samples expected from DD/DT campaign at JET. Fusion Engineering and Design, 2017, 125, 307-313.	1.9	6
317	Impurity re-distribution in the corner regions of the JET divertor. Physica Scripta, 2017, T170, 014060.	2.5	6
318	Self-consistent coupling of DSMC method and SOLPS code for modeling tokamak particle exhaust. Nuclear Fusion, 2017, 57, 066037.	3.5	6
319	Investigation of (n, p) , $(n, 2n)$ reaction cross sections for Sn isotopes for fusion reactor applications. Applied Radiation and Isotopes, 2018, 133, 31-37.	1.5	6
320	An improved model for the accurate calculation of parallel heat fluxes at the JET bulk tungsten outer divertor. Nuclear Fusion, 2018, 58, 106034.	3.5	6
321	Control of the hydrogen:deuterium isotope mixture using pellets in JET. Nuclear Fusion, 2019, 59, 106047.	3.5	6
322	Deep neural networks for plasma tomography with applications to JET and COMPASS. Journal of Instrumentation, 2019, 14, C09011-C09011.	1.2	6
323	Geodesic acoustic mode evolution in L-mode approaching the Lâ \in "H transition on JET. Plasma Physics and Controlled Fusion, 2019, 61, 075007.	2.1	6
324	Measurement of 232Th and 238U neutron capture cross-sections in the energy range 5–17†MeV. Applied Radiation and Isotopes, 2019, 143, 72-78.	1.5	6

#	Article	IF	CITATIONS
325	Tritium analysis of divertor tiles used in JET ITER-like wall campaigns by means of $\langle i \rangle \hat{l}^2 \langle i \rangle$ -ray induced x-ray spectrometry. Physica Scripta, 2017, T170, 014014.	2.5	6
326	Time-resolved deposition in the remote region of the JET-ILW divertor: measurements and modelling. Physica Scripta, 2017, T170, 014059.	2.5	6
327	Systematic study of the (n, 2n) reaction cross section for ¹²¹ Sb and ¹²³ Sb isotopes. Chinese Physics C, 2022, 46, 054002.	3.7	6
328	The merits of ion cyclotron resonance heating schemes for sawtooth control in tokamak plasmas. Journal of Plasma Physics, 2015, 81, .	2.1	5
329	Core fusion power gain and alpha heating in JET, TFTR, and ITER. Nuclear Fusion, 2016, 56, 056002.	3.5	5
330	Neutronic analysis of JET external neutron monitor response. Fusion Engineering and Design, 2016, 109-111, 99-103.	1.9	5
331	The non-thermal origin of the tokamak low-density stability limit. Nuclear Fusion, 2016, 56, 056010.	3.5	5
332	Plasma turbulence measured with fast frequency swept reflectometry in JET H-mode plasmas. Nuclear Fusion, 2016, 56, 126019.	3.5	5
333	Hybrid cancellation of ripple disturbances arising in AC/DC converters. Automatica, 2017, 77, 344-352.	5.0	5
334	Generation of the neutron response function of an NE213 scintillator for fusion applications. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 866, 222-229.	1.6	5
335	Characterisation of neutron generators and monitoring detectors for the in-vessel calibration of JET. Fusion Engineering and Design, 2018, 136, 233-238.	1.9	5
336	Plasma-wall interaction on the divertor tiles of JET ITER-like wall from the viewpoint of micro/nanoscopic observations. Fusion Engineering and Design, 2018, 136, 199-204.	1.9	5
337	ICRH antennaS-matrix measurements and plasma coupling characterisation at JET. Nuclear Fusion, 2018, 58, 046012.	3.5	5
338	Shutdown dose rate measurements after the 2016 Deuterium-Deuterium campaign at JET. Fusion Engineering and Design, 2018, 136, 1348-1353.	1.9	5
339	Application of the Denovo Discrete Ordinates Radiation Transport Code to Large-Scale Fusion Neutronics. Fusion Science and Technology, 2018, 74, 303-314.	1.1	5
340	Shutdown dose rate neutronics experiment during high performances DD operations at JET. Fusion Engineering and Design, 2018, 136, 1545-1549.	1.9	5
341	Preparation for commissioning of materials detritiation facility at Culham Science Centre. Fusion Engineering and Design, 2018, 136, 1391-1395.	1.9	5
342	Measurement of Th232(n, \hat{l}^3) reaction cross sections in the neutron energy range of 11 \hat{a} e"19 MeV. Physical Review C, 2018, 98, .	2.9	5

#	Article	IF	Citations
343	Scaling of the geodesic acoustic mode amplitude on JET. Plasma Physics and Controlled Fusion, 2018, 60, 085006.	2.1	5
344	RF sheath modeling of experimentally observed plasma surface interactions with the JET ITER-Like Antenna. Nuclear Materials and Energy, 2019, 19, 324-329.	1.3	5
345	altimg="si1.gir" overflow="scroll"> <mml:mmultiscripts><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mrow><mml:mi>n</mml:mi><mml:mi>a</mml:mi><mml:mi>t</mml:mi></mml:mrow><td>pts><mml< td=""><td>:mi>i</td></mml<></td></mml:mmultiscripts>	pts> <mml< td=""><td>:mi>i</td></mml<>	:mi>i

#	Article	IF	CITATIONS
361	Inter-ELM evolution of the edge current density in JET-ILW type I ELMy H-mode plasmas. Plasma Physics and Controlled Fusion, 2018, 60, 085003.	2.1	4
362	Interpretative and predictive modelling of Joint European Torus collisionality scans. Plasma Physics and Controlled Fusion, 2019, 61, 115004.	2.1	4
363	On a fusion born triton effect in JET deuterium discharges with H-minority ion cyclotron range of frequencies heating. Nuclear Fusion, 2019, 59, 064001.	3.5	4
364	COREDIV numerical simulation of high neutron rate JET-ILW DD pulses in view of extension to JET-ILW DT experiments. Nuclear Fusion, 2019, 59, 056026.	3.5	4
365	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mmultiscripts><mml:mi>Cd</mml:mi> /><mml:none></mml:none><mml:mn>114</mml:mn><mml:mo>,<mml:none< td=""><td></td><td></td></mml:none<></mml:mo></mml:mmultiscripts></mml:mrow>		
366	Robust regression with CUDA and its application to plasma reflectometry. Review of Scientific Instruments, 2015, 86, 113507.	. <td>ath></td>	ath>
367	Free boundary equilibrium in 3D tokamaks with toroidal rotation. Nuclear Fusion, 2015, 55, 063032.	3.5	3
368	Comparative gyrokinetic analysis of JET baseline H-mode core plasmas with carbon wall and ITER-like wall. Plasma Physics and Controlled Fusion, 2016, 58, 045021.	2.1	3
369	A classification scheme for edge-localized modes based on their probability distributions. Review of Scientific Instruments, 2016, 87, 11D404.	1.3	3
370	Numerical calculations of non-inductive current driven by microwaves in JET. Plasma Physics and Controlled Fusion, 2016, 58, 125001.	2.1	3
371	JET Tokamak, preparation of a safety case for tritium operations. Fusion Engineering and Design, 2016, 109-111, 1308-1312.	1.9	3
372	Kinematic background discrimination methods using a fully digital data acquisition system for TOFOR. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 838, 82-88.	1.6	3
373	Modelling of the JET DT Experiments in Carbon and ITER-like Wall Configurations. Contributions To Plasma Physics, 2016, 56, 766-771.	1.1	3
374	Correlation analysis for energy losses, waiting times and durations of type I edge-localized modes in the Joint European Torus. Nuclear Fusion, 2017, 57, 036026.	3.5	3
375	The global build-up to intrinsic ELM bursts and comparison with pellet triggered ELMs seen in JET. Nuclear Fusion, 2017, 57, 022017.	3.5	3
376	A 3D electromagnetic model of the iron core in JET. Fusion Engineering and Design, 2017, 123, 527-531.	1.9	3
377	EDGE2D-EIRENE simulations of the impact of poloidal flux expansion on the radiative divertor performance in JET. Nuclear Materials and Energy, 2017, 12, 786-790.	1.3	3
378	Intra-ELM tungsten sputtering in JET ITER-like wall: analytical studies of Be impurity and ELM type influence. Physica Scripta, 2017, T170, 014065.	2.5	3

#	Article	IF	CITATIONS
379	Evidence of9Be  +  pnuclear reactions during 2ωCHand hydrogen minority ICRH in JET-ILW hyddeuterium plasmas. Nuclear Fusion, 2018, 58, 026033.	lrogen and	3
380	Escaping alpha-particle monitor for burning plasmas. Nuclear Fusion, 2018, 58, 082009.	3.5	3
381	Nonlinear dynamic analysis of \widehat{Dl} signals for type I edge localized modes characterization on JET with a carbon wall. Plasma Physics and Controlled Fusion, 2018, 60, 025010.	2.1	3
382	Heat flux analysis of Type-I ELM impact on a sloped, protruding surface in the JET bulk tungsten divertor. Nuclear Materials and Energy, 2018, 17, 182-187.	1.3	3
383	OVERVIEW OF NEUTRON MEASUREMENTS IN JET FUSION DEVICE. Radiation Protection Dosimetry, 2018, 180, 102-108.	0.8	3
384	Excitation function of the p+natAg reactions in the energy range 10–22 MeV. Nuclear Physics A, 2018, 979, 102-112.	1.5	3
385	Activation material selection for multiple foil activation detectors in JET TT campaign. Fusion Engineering and Design, 2018, 136, 988-992.	1.9	3
386	Alpha heating, isotopic mass, and fast ion effects in deuterium–tritium experiments. Nuclear Fusion, 2018, 58, 096011.	3.5	3
387	Modification of the Alfvén wave spectrum by pellet injection. Nuclear Fusion, 2019, 59, 106031.	3.5	3
388	Recurrence Plots for Dynamic Analysis of Type-I ELMs at JET With a Carbon Wall. IEEE Transactions on Plasma Science, 2019, 47, 1871-1877.	1.3	3
389	Impact of fast ions on density peaking in JET: fluid and gyrokinetic modeling. Plasma Physics and Controlled Fusion, 2019, 61, 075008.	2.1	3
390	Radial variation of heat transport in L-mode JET discharges. Nuclear Fusion, 2019, 59, 056006.	3.5	3
391	Analysis of the outer divertor hot spot activity in the protection video camera recordings at JET. Fusion Engineering and Design, 2019, 139, 115-123.	1.9	3
392	Measurement of (n,Âxn) reaction cross sections on $\113,115 ln isotopes using quasi-monoenergetic neutrons within $10\hat{a}$ MeV. European Physical Journal Plus, 2020, 135, 1.	2.6	3
393	Cross-sections for production of <mml:math altimg="si2.svg" xmins:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mrow><mml:mi>I</mml:mi><mml:mi>n</mml:mi>><mml:mi>n</mml:mi>><mml:mi>><mml:mi>></mml:mi></mml:mi></mml:mrow></mml:mmultiscripts></mml:math> by quasi-monoenergetic neutrons within 7-20ÂMeV. Radiation Physics and Chemistry, 2022, 199, 110270.	2.8	3
394	Deuterium ion beam irradiation onto the pulsed laser deposited tungsten thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, 061510.	2.1	2
395	Studies of the non-axisymmetric plasma boundary displacement in JET in presence of externally applied magnetic field. Plasma Physics and Controlled Fusion, 2015, 57, 104003.	2.1	2
396	Neutron flux spectra investigations in breeding blanket assembly containing lithium titanate and Lead irradiated with DT neutrons. Fusion Engineering and Design, 2015, 100, 619-628.	1.9	2

#	Article	IF	CITATIONS
397	Effect of deuterium ion beam irradiation onto the mirror-like pulsed laser deposited thin films of rhodium. Nuclear Instruments & Methods in Physics Research B, 2015, 342, 150-157.	1.4	2
398	lon temperature and toroidal rotation in JET's low torque plasmas. Review of Scientific Instruments, 2016, 87, 11E557.	1.3	2
399	A generalized Abel inversion method for gamma-ray imaging of thermonuclear plasmas. Journal of Instrumentation, 2016, 11, C03001-C03001.	1.2	2
400	Thermo-mechanical properties of W/Mo markers coatings deposited on bulk W. Physica Scripta, 2016, T167, 014028.	2.5	2
401	Modelling of plasma-edge and plasma–wall interaction physics at JET with the metallic first-wall. Physica Scripta, 2016, T167, 014078.	2.5	2
402	Effect of Microwave Power on Electron Temperature and Electron Density in Deuterium Plasma Generated by Electron Cyclotron Resonance. IEEE Transactions on Plasma Science, 2016, 44, 7-14.	1.3	2
403	Towards self-consistent plasma modelisation in presence of neoclassical tearing mode and sawteeth: effects on transport coefficients. Plasma Physics and Controlled Fusion, 2017, 59, 125012.	2.1	2
404	Gyrokinetic simulations of particle transport in pellet fuelled JET discharges. Plasma Physics and Controlled Fusion, 2017, 59, 105005.	2.1	2
405	Dynamic power balance analysis in JET. Physica Scripta, 2017, T170, 014035.	2.5	2
406	Novel method for determination of tritium depth profiles in metallic samples. Nuclear Fusion, 2019, 59, 106006.	3.5	2
407	Measurement of cross sections for flux monitor reactions using quasi-monoenergetic neutrons. European Physical Journal Plus, 2021, 136, 1.	2.6	2
408	Cross-section of (n,2n) reaction for niobium and strontium isotopes between 13.97 to 20.02ÂMeV neutron energies. Applied Radiation and Isotopes, 2022, 182, 110142.	1.5	2
409	Measurement of (n, p) cross section for some structural materials at 14.2 MeV. , 2016, , .		1
410	X-ray micro-laminography for the <i>ex situ </i> analysis of W-CFC samples retrieved from JET ITER-like wall. Physica Scripta, 2016, T167, 014050.	2.5	1
411	Thermal analysis of protruding surfaces in the JET divertor. Nuclear Fusion, 2017, 57, 066009.	3.5	1
412	Classification of ELM types in Joint European Torus based on global plasma parameters using discriminant analysis. Fusion Engineering and Design, 2017, 123, 717-721.	1.9	1
413	Spectrum average cross section measurement of $183W$ (n, p) $183Ta$ and $184W$ (n, p) $184Ta$ reaction cross section in $252Cf(sf)$ neutron field. Applied Radiation and Isotopes, 2017 , 127 , $150-155$.	1.5	1
414	Divertor currents optimization procedure for JET-ILW high flux expansion experiments. Fusion Engineering and Design, 2018, 129, 115-119.	1.9	1

#	Article	IF	CITATIONS
415	Measurement of $\langle \sup \rangle 100 \langle \sup \rangle Mo(n, 2n) \langle \sup \rangle 99 \langle \sup \rangle Mo$ reaction cross-sections using 10-20 MeV quasi-monoenergetic neutrons., 2018,,.		1
416	Neutron induced reaction cross-section for the plasma facing fusion reactor material - Tungsten isotopes. , 2018, , .		1
417	Activation Inventories after Exposure to DD/DT Neutrons in Safety Analysis of Nuclear Fusion Installations. Radiation Protection Dosimetry, 2018, 180, 125-128.	0.8	1
418	Neutron capture cross-sections for 159Tb isotope in the energy range of 5 to 17†MeV. Applied Radiation and Isotopes, 2018, 141, 10-14.	1.5	1
419	Measurement of neutron induced 86Sr(n, 2n)85Sr reaction cross sections at different neutron energies. Applied Radiation and Isotopes, 2019, 154, 108866.	1.5	1
420	Energetic ion losses †channeling' mechanism and strategy for mitigation. Plasma Physics and Controlled Fusion, 2019, 61, 084008.	2.1	1
421	Population modelling of the He II energy levels in tokamak plasmas: I. Collisional excitation model. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 045001.	1.5	1
422	Micro ion beam analysis for the erosion of beryllium marker tiles in a tokamak limiter. Nuclear Instruments & Methods in Physics Research B, 2019, 450, 200-204.	1.4	1
423	Study of (n, 2n) reaction cross sections for 107Ag within the energy range of 9–22ÂMeV. European Physical Journal Plus, 2021, 136, 1.	2.6	1
424	On determining the prediction limits of mathematical models for time series. Journal of Instrumentation, 2016, 11, C07013-C07013.	1.2	1
425	Experimental Studies on the Self-Shielding Effect in Fissile Fuel Breeding Measurement in Thorium Oxide Pellets Irradiated with 14 MeV Neutrons. Plasma Science and Technology, 2013, 15, 166-170.	1.5	0
426	Classification of JET Neutron and Gamma Emissivity Profiles. Journal of Instrumentation, 2016, 11, C05021-C05021.	1.2	0
427	MHD marking using the MSE polarimeter optics in ILW JET plasmas. Review of Scientific Instruments, 2016, 87, 11E556.	1.3	0
428	Characteristics of pre-ELM structures during ELM control experiment on JET withn  =  2 magnet perturbations. Nuclear Fusion, 2016, 56, 092011.	ic 3.5	0
429	Estimation of ($\langle i \rangle n, p \langle i \rangle$) and ($\langle i \rangle n \langle i \rangle$, $\langle b \rangle \hat{l} \pm \langle b \rangle$) Cross Section of Radionuclide $\langle sup \rangle 60 \langle sup \rangle Co$ for Fusion Technology Applications. Fusion Science and Technology, 2018, 73, 545-551.	1.1	0
430	First observation of the depolarization of Thomson scattering radiation by a fusion plasma. Nuclear Fusion, 2018, 58, 044003.	3.5	0
431	Propagating transport-code input parameter uncertainties with deterministic sampling. Plasma Physics and Controlled Fusion, 2018, 60, 125010.	2.1	O
432	Synthetic diagnostic for the JET scintillator probe lost alpha measurements. Journal of Instrumentation, 2019, 14, C09018-C09018.	1.2	0