
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7414933/publications.pdf Version: 2024-02-01

KENT D CHADMAN

#	Article	IF	CITATIONS
1	A glossary of plant cell structures: Current insights and future questions. Plant Cell, 2022, 34, 10-52.	3.1	27
2	The biosynthesis and roles of N-acylethanolamines in plants. Advances in Botanical Research, 2022, 101, 345-373.	0.5	2
3	Transgenic manipulation of triacylglycerol biosynthetic enzymes in B. napus alters lipid-associated gene expression and lipid metabolism. Scientific Reports, 2022, 12, 3352.	1.6	1
4	Overexpression of phospholipid: diacylglycerol acyltransferase in <i>Brassica napus</i> results in changes in lipid metabolism and oil accumulation. Biochemical Journal, 2022, 479, 805-823.	1.7	9
5	Better together: Protein partnerships for lineage-specific oil accumulation. Current Opinion in Plant Biology, 2022, 66, 102191.	3.5	9
6	Enhanced seedling growth by 3― <i>n</i> â€pentadecylphenolethanolamide is mediated by fatty acid amide hydrolases in upland cotton (<scp> <i>Gossypium hirsutum</i> </scp> L). Plant Direct, 2022, 6, .	0.8	3
7	Isolation of Lipid Droplets for Protein and Lipid Analysis. Methods in Molecular Biology, 2021, 2295, 295-320.	0.4	4
8	In Situ Localization of Plant Lipid Metabolites by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI). Methods in Molecular Biology, 2021, 2295, 417-438.	0.4	5
9	Production of tocotrienols in seeds of cotton (<i>Gossypium hirsutum</i> L.) enhances oxidative stability and offers nutraceutical potential. Plant Biotechnology Journal, 2021, 19, 1268-1282.	4.1	17
10	Analyzing Mass Spectrometry Imaging Data of 13C-Labeled Phospholipids in Camelina sativa and Thlaspi arvense (Pennycress) Embryos. Metabolites, 2021, 11, 148.	1.3	14
11	CRISPR/Cas9-Induced fad2 and rod1 Mutations Stacked With fae1 Confer High Oleic Acid Seed Oil in Pennycress (Thlaspi arvense L.). Frontiers in Plant Science, 2021, 12, 652319.	1.7	25
12	Arabidopsis thaliana EARLY RESPONSIVE TO DEHYDRATION 7 Localizes to Lipid Droplets via Its Senescence Domain. Frontiers in Plant Science, 2021, 12, 658961.	1.7	16
13	LDIP cooperates with SEIPIN and LDAP to facilitate lipid droplet biogenesis in Arabidopsis. Plant Cell, 2021, 33, 3076-3103.	3.1	31
14	Lipid Signaling through G Proteins. Trends in Plant Science, 2021, 26, 720-728.	4.3	7
15	Chemical Genetics to Uncover Mechanisms Underlying Lipid-Mediated Signaling Events in. Methods in Molecular Biology, 2021, 2213, 3-16.	0.4	2
16	Mouse Fat-Specific Protein 27 (FSP27) expressed in plant cells localizes to lipid droplets and promotes lipid droplet accumulation and fusion. Biochimie, 2020, 169, 41-53.	1.3	14
17	Fatty Acid Amide Hydrolases: An Expanded Capacity for Chemical Communication?. Trends in Plant Science, 2020, 25, 236-249.	4.3	20
18	SEIPIN Isoforms Interact with the Membrane-Tethering Protein VAP27-1 for Lipid Droplet Formation. Plant Cell, 2020, 32, 2932-2950.	3.1	39

#	Article	IF	CITATIONS
19	Seedling Chloroplast Responses Induced by N-Linolenoylethanolamine Require Intact G-Protein Complexes. Plant Physiology, 2020, 184, 459-477.	2.3	4
20	Lipophilic signals lead to organâ€specific gene expression changes in Arabidopsis seedlings. Plant Direct, 2020, 4, e00242.	0.8	4
21	Cellular Plasticity in Response to Suppression of Storage Proteins in the Brassica napus Embryo. Plant Cell, 2020, 32, 2383-2401.	3.1	19
22	Lipid droplets in plants and algae: Distribution, formation, turnover and function. Seminars in Cell and Developmental Biology, 2020, 108, 82-93.	2.3	63
23	The genome of jojoba (<i>Simmondsia chinensis</i>): A taxonomically isolated species that directs wax ester accumulation in its seeds. Science Advances, 2020, 6, eaay3240.	4.7	53
24	Heterogeneous Distribution of Erucic Acid in Brassica napus Seeds. Frontiers in Plant Science, 2020, 10, 1744.	1.7	12
25	Lubrication characteristics of wax esters from oils produced by a genetically-enhanced oilseed crop. Tribology International, 2020, 146, 106234.	3.0	10
26	Lipid Droplet–Peroxisome Connections in Plants. Contact (Thousand Oaks (Ventura County, Calif)), 2020, 3, 251525642090876.	0.4	10
27	The endocannabinoid system. Essays in Biochemistry, 2020, 64, 485-499.	2.1	30
28	Nature-Guided Synthesis of Advanced Bio-Lubricants. Scientific Reports, 2019, 9, 11711.	1.6	33
29	Mechanisms of lipid droplet biogenesis. Biochemical Journal, 2019, 476, 1929-1942.	1.7	68
30	iCURE (iterative courseâ€based undergraduate research experience): A caseâ€study. Biochemistry and Molecular Biology Education, 2019, 47, 565-572.	0.5	10
31	Cotton (Gossypium hirsutum L.) mutants with reduced levels of palmitic acid (C16:0) in seed lipids. Euphytica, 2019, 215, 1.	0.6	6
32	Structural analysis of a plant fatty acid amide hydrolase provides insights into the evolutionary diversity of bioactive acylethanolamides. Journal of Biological Chemistry, 2019, 294, 7419-7432.	1.6	13
33	Mouse lipogenic proteins promote the co-accumulation of triacylglycerols and sesquiterpenes in plant cells. Planta, 2019, 250, 79-94.	1.6	15
34	Tissue-specific differences in metabolites and transcripts contribute to the heterogeneity of ricinoleic acid accumulation in Ricinus communis L. (castor) seeds. Metabolomics, 2019, 15, 6.	1.4	21
35	Response of high leaf-oil <i>Arabidopsis thaliana</i> plant lines to biotic or abiotic stress. Plant Signaling and Behavior, 2018, 13, e1464361.	1.2	11
36	Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil. Plant Biotechnology Journal, 2018, 16, 926-938.	4.1	32

#	Article	IF	CITATIONS
37	Spatial analysis of lipid metabolites and expressed genes reveals tissueâ€specific heterogeneity of lipid metabolism in high―and lowâ€oil <i>Brassica napus</i> L. seeds. Plant Journal, 2018, 94, 915-932.	2.8	66
38	Discontinuous fatty acid elongation yields hydroxylated seed oil with improved function. Nature Plants, 2018, 4, 711-720.	4.7	43
39	Visualizing the oilseed lipidome. Inform, 2018, 29, 21-24.	0.1	4
40	Thermal acclimation in American alligators: Effects of temperature regime on growth rate, mitochondrial function, and membrane composition. Journal of Thermal Biology, 2017, 68, 45-54.	1.1	13
41	Development and application of subâ€2â€Î¼m particle CO ₂ â€based chromatography coupled to mass spectrometry for comprehensive analysis of lipids in cottonseed extracts. Rapid Communications in Mass Spectrometry, 2017, 31, 591-605.	0.7	13
42	Engineering the production of conjugated fatty acids in <i>Arabidopsis thaliana</i> leaves. Plant Biotechnology Journal, 2017, 15, 1010-1023.	4.1	29
43	Plant lipidomics at the crossroads: From technology to biology driven science. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 786-791.	1.2	12
44	Two Acyltransferases Contribute Differently to Linolenic Acid Levels in Seed Oil. Plant Physiology, 2017, 173, 2081-2095.	2.3	74
45	A chemical genetic screen uncovers a small molecule enhancer of the N-acylethanolamine degrading enzyme, fatty acid amide hydrolase, in Arabidopsis. Scientific Reports, 2017, 7, 41121.	1.6	3
46	Spatial and Temporal Mapping of Key Lipid Species in <i>Brassica napus</i> Seeds. Plant Physiology, 2017, 173, 1998-2009.	2.3	72
47	Turning Over a New Leaf in Lipid Droplet Biology. Trends in Plant Science, 2017, 22, 596-609.	4.3	126
48	Three-dimensional visualization of membrane phospholipid distributions in Arabidopsis thaliana seeds: A spatial perspective of molecular heterogeneity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 268-281.	1.2	36
49	Mouse fat storageâ€inducing transmembrane protein 2 (<scp>FIT</scp> 2) promotes lipid droplet accumulation in plants. Plant Biotechnology Journal, 2017, 15, 824-836.	4.1	37
50	Lipid metabolites in seeds of diverse Gossypium accessions: molecular identification of a high oleic mutant allele. Planta, 2017, 245, 595-610.	1.6	22
51	Arabidopsis lipid dropletâ€∎ssociated protein (LDAP) – interacting protein (<scp>LDIP</scp>) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds. Plant Journal, 2017, 92, 1182-1201.	2.8	71
52	Production of wax esters in the wild oil species Lepidium campestre. Industrial Crops and Products, 2017, 108, 535-542.	2.5	12
53	Tailoring seed oil composition in the real world: optimising omega-3 long chain polyunsaturated fatty acid accumulation in transgenic Camelina sativa. Scientific Reports, 2017, 7, 6570.	1.6	79
54	MALDI-MS Imaging of Urushiols in Poison Ivy Stem. Molecules, 2017, 22, 711.	1.7	21

#	Article	IF	CITATIONS
55	Genetic Analysis of Cottonseed Protein and Oil in a Diverse Cotton Germplasm. Crop Science, 2016, 56, 2457-2464.	0.8	16
56	Lipidomic Analysis of Endocannabinoid Signaling: Targeted Metabolite Identification and Quantification. Neural Plasticity, 2016, 2016, 1-13.	1.0	22
57	Malonylation of Glucosylated N-Lauroylethanolamine A NEW PATHWAY THAT DETERMINES N-ACYLETHANOLAMINE METABOLIC FATE IN PLANTS. Journal of Biological Chemistry, 2016, 291, 27112-27121.	1.6	12
58	Plant lipid biology. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1205-1206.	1.2	3
59	The impact of seed size and chemical composition on seedling vigor, yield, and fiber quality of cotton in five production environments. Field Crops Research, 2016, 193, 186-195.	2.3	45
60	Changes in Retinal <i>N</i> â€Acylethanolamines and their Oxylipin Derivatives During the Development of Visual Impairment in a Mouse Model for Glaucoma. Lipids, 2016, 51, 857-866.	0.7	8
61	Fatty Acid Amide Hydrolase Regulates Peripheral B Cell Receptor Revision, Polyreactivity, and B1 Cells in Lupus. Journal of Immunology, 2016, 196, 1507-1516.	0.4	10
62	Evaluation of a custom single Peltier-cooled ablation cell for elemental imaging of biological samples in laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Journal of Analytical Atomic Spectrometry, 2016, 31, 1030-1033.	1.6	15
63	Modification of starch metabolism in transgenic <i>Arabidopsis thaliana</i> increases plant biomass and triples oilseed production. Plant Biotechnology Journal, 2016, 14, 976-985.	4.1	18
64	Lipid Droplet-Associated Proteins (LDAPs) Are Required for the Dynamic Regulation of Neutral Lipid Compartmentation in Plant Cells. Plant Physiology, 2016, 170, 2052-2071.	2.3	125
65	Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ. Current Opinion in Biotechnology, 2016, 37, 53-60.	3.3	117
66	Nanomanipulation-Coupled Matrix-Assisted Laser Desorption/ Ionization-Direct Organelle Mass Spectrometry: A Technique for the Detailed Analysis of Single Organelles. Journal of the American Society for Mass Spectrometry, 2016, 27, 187-193.	1.2	23
67	Nondestructive Measurements of Cottonseed Nutritional Trait Diversity in the U.S. National Cotton Germplasm Collection. Crop Science, 2015, 55, 770-782.	0.8	25
68	Effects of synthetic alkamides on Arabidopsis fatty acid amide hydrolase activity and plant development. Phytochemistry, 2015, 110, 58-71.	1.4	9
69	Lipoxygenaseâ€derived 9â€hydro(pero)xides of linoleoylethanolamide interact with <scp>ABA</scp> signaling to arrest root development during Arabidopsis seedling establishment. Plant Journal, 2015, 82, 315-327.	2.8	25
70	Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation. Plant Cell, 2015, 27, 2616-2636.	3.1	134
71	Synthesis of Phenoxyacyl-Ethanolamides and Their Effects on Fatty Acid Amide Hydrolase Activity. Journal of Biological Chemistry, 2014, 289, 9340-9351.	1.6	15
72	Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium. BMC Plant Biology, 2014, 14, 312.	1.6	41

#	Article	IF	CITATIONS
73	CGI-58, a key regulator of lipid homeostasis and signaling in plants, also regulates polyamine metabolism. Plant Signaling and Behavior, 2014, 9, e27723.	1.2	10
74	Metabolite Imager: customized spatial analysis of metabolite distributions in mass spectrometry imaging. Metabolomics, 2014, 10, 337-348.	1.4	26
75	Modified oleic cottonseeds show altered content, composition and tissue-specific distribution of triacylglycerol molecular species. Biochimie, 2014, 96, 28-36.	1.3	28
76	Metabolic engineering of biomass for high energy density: oilseedâ€ i ke triacylglycerol yields from plant leaves. Plant Biotechnology Journal, 2014, 12, 231-239.	4.1	256
77	Lipidomics in situ: Insights into plant lipid metabolism from high resolution spatial maps of metabolites. Progress in Lipid Research, 2014, 54, 32-52.	5.3	71
78	Changes during leaf expansion of ΦPSII temperature optima in Gossypium hirsutum are associated with the degree of fatty acid lipid saturation. Journal of Plant Physiology, 2014, 171, 411-420.	1.6	15
79	<i>N</i> â€Acylethanolamines: lipid metabolites with functions in plant growth and development. Plant Journal, 2014, 79, 568-583.	2.8	60
80	lmaging heterogeneity of membrane and storage lipids in transgenic <i><scp>C</scp>amelina sativa</i> seeds with altered fatty acid profiles. Plant Journal, 2013, 76, 138-150.	2.8	84
81	A peroxisome biogenesis deficiency prevents the binding of alpha-synuclein to lipid droplets in lipid-loaded yeast. Biochemical and Biophysical Research Communications, 2013, 438, 452-456.	1.0	15
82	Identification of a New Class of Lipid Droplet-Associated Proteins in Plants Â. Plant Physiology, 2013, 162, 1926-1936.	2.3	167
83	Analysis of Fatty Acid Amide Hydrolase Activity in Plants. Methods in Molecular Biology, 2013, 1009, 115-127.	0.4	14
84	Commentary: Why don't plant leaves get fat?. Plant Science, 2013, 207, 128-134.	1.7	100
85	The α/β Hydrolase CGI-58 and Peroxisomal Transport Protein PXA1 Coregulate Lipid Homeostasis and Signaling in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 1726-1739.	3.1	77
86	Lipid signaling in plants. Frontiers in Plant Science, 2013, 4, 216.	1.7	30
87	Ethanolamide Oxylipins of Linolenic Acid Can Negatively Regulate <i>Arabidopsis</i> Seedling Development Â. Plant Cell, 2013, 25, 3824-3840.	3.1	32
88	N-Palmitoylethanolamine depot injection increased its tissue levels and those of other acylethanolamide lipids. Drug Design, Development and Therapy, 2013, 7, 747.	2.0	20
89	Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells. Plant Signaling and Behavior, 2013, 8, e27141.	1.2	55
90	Effects of Nitrogen and Planting Seed Size on Cotton Growth, Development, and Yield. Agronomy Journal, 2013, 105, 1853-1859.	0.9	44

#	Article	IF	CITATIONS
91	Spatial Mapping of Lipids at Cellular Resolution in Embryos of Cotton. Plant Cell, 2012, 24, 622-636.	3.1	114
92	N-Acylated phospholipid metabolism and seedling growth. Plant Signaling and Behavior, 2012, 7, 1200-1202.	1.2	6
93	Biogenesis and functions of lipid droplets in plants. Journal of Lipid Research, 2012, 53, 215-226.	2.0	333
94	Lipidomic analysis of N-acylphosphatidylethanolamine molecular species in Arabidopsis suggests feedback regulation by N-acylethanolamines. Planta, 2012, 236, 809-824.	1.6	26
95	Compartmentation of Triacylglycerol Accumulation in Plants. Journal of Biological Chemistry, 2012, 287, 2288-2294.	1.6	391
96	Overexpression of Fatty Acid Amide Hydrolase Induces Early Flowering in Arabidopsis thaliana. Frontiers in Plant Science, 2012, 3, 32.	1.7	32
97	Onâ€stage liquidâ€phase lipid microextraction coupled to nanospray mass spectrometry for detailed, nanoâ€scale lipid analysis. Rapid Communications in Mass Spectrometry, 2012, 26, 957-962.	0.7	12
98	Lipidomics in tissues, cells and subcellular compartments. Plant Journal, 2012, 70, 69-80.	2.8	51
99	Lauroylethanolamide and linoleoylethanolamide improve functional outcome in a rodent model for stroke. Neuroscience Letters, 2011, 492, 134-138.	1.0	22
100	Protection of neurons in the retinal ganglion cell layer against excitotoxicity by the N-acylethanolamine, N-linoleoylethanolamine. Clinical Ophthalmology, 2011, 5, 543.	0.9	15
101	Simultaneous Quantification of Oil and Protein in Cottonseed by Lowâ€Field Timeâ€Domain Nuclear Magnetic Resonance. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1521-1529.	0.8	31
102	Organellar lipidomics. Plant Signaling and Behavior, 2011, 6, 1594-1596.	1.2	12
103	Lipoxygenase-mediated Oxidation of Polyunsaturated N-Acylethanolamines in Arabidopsis. Journal of Biological Chemistry, 2011, 286, 15205-15214.	1.6	29
104	<i>N</i> -Acylethanolamine (NAE) inhibits growth in <i>Arabidopsis thaliana</i> seedlings via ABI3-dependent and -independent pathways. Plant Signaling and Behavior, 2011, 6, 671-679.	1.2	22
105	Visualization of Lipid Droplet Composition by Direct Organelle Mass Spectrometry. Journal of Biological Chemistry, 2011, 286, 3298-3306.	1.6	74
106	The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. Journal of Cell Biology, 2011, 192, 1043-1055.	2.3	264
107	Blocking galactolipid biosynthesis. Nature Chemical Biology, 2011, 7, 761-762.	3.9	3
108	The seeds of green energy: Expanding the contribution of plant oils as biofuels. Biochemist, 2011, 33, 34-38.	0.2	57

#	Article	IF	CITATIONS
109	Changes in N-acylethanolamine Pathway Related Metabolites in a Rat Model of Cerebral Ischemia/Reperfusion. Journal of Glycomics & Lipidomics, 2011, 1, .	0.4	6
110	Lipid Profiling Reveals Tissueâ€Specific Differences for Ethanolamide Lipids in Mice Lacking Fatty Acid Amide Hydrolase. Lipids, 2010, 45, 863-875.	0.7	34
111	Lauroylethanolamide is a potent competitive inhibitor of lipoxygenase activity. FEBS Letters, 2010, 584, 3215-3222.	1.3	16
112	Temperature-sensitive Post-translational Regulation of Plant Omega-3 Fatty-acid Desaturases Is Mediated by the Endoplasmic Reticulum-associated Degradation Pathway. Journal of Biological Chemistry, 2010, 285, 21781-21796.	1.6	72
113	Disruption of the <i>Arabidopsis</i> CGI-58 homologue produces Chanarin–Dorfman-like lipid droplet accumulation in plants. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17833-17838.	3.3	125
114	Fatty acid amide lipid mediators in plants. Plant Science, 2010, 178, 411-419.	1.7	42
115	Fatty Acid Amide Hydrolase and the Metabolism of N-Acylethanolamine Lipid Mediators in Plants. Plant Cell Monographs, 2010, , 293-306.	0.4	0
116	Mutations in Arabidopsis Fatty Acid Amide Hydrolase Reveal That Catalytic Activity Influences Growth but Not Sensitivity to Abscisic Acid or Pathogens. Journal of Biological Chemistry, 2009, 284, 34065-34074.	1.6	24
117	Benefits of low kenaf loading in biobased composites of poly(<scp>L</scp> â€lactide) and kenaf fiber. Journal of Applied Polymer Science, 2009, 112, 1294-1301.	1.3	22
118	The neuroprotective properties of palmitoylethanolamine against oxidative stress in a neuronal cell line. Molecular Neurodegeneration, 2009, 4, 50.	4.4	35
119	Identification and expression of a new delta-12 fatty acid desaturase (FAD2-4) gene in upland cotton and its functional expression in yeast and Arabidopsis thaliana plants. Plant Physiology and Biochemistry, 2009, 47, 462-471.	2.8	79
120	Bridging Traditional and Molecular Genetics in Modifying Cottonseed Oil. , 2009, , 353-382.		21
121	Overexpression of a fatty acid amide hydrolase compromises innate immunity in Arabidopsis. Plant Journal, 2008, 56, 336-349.	2.8	58
122	Reduced Oil Accumulation in Cottonseeds Transformed with a <i>Brassica</i> Nonfunctional Allele of a Deltaâ€12 Fatty Acid Desaturase (<i>FAD2</i>). Crop Science, 2008, 48, 1470-1481.	0.8	24
123	<i>N</i> -Acylethanolamine Metabolism Interacts with Abscisic Acid Signaling in <i>Arabidopsis thaliana</i> Seedlings. Plant Cell, 2007, 19, 2454-2469.	3.1	64
124	Evidence that Mono-ADP-Ribosylation of CtBP1/BARS Regulates Lipid Storage. Molecular Biology of the Cell, 2007, 18, 3015-3025.	0.9	26
125	Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic,. Journal of Lipid Research, 2007, 48, 837-847.	2.0	397
126	The <i>N</i> â€Acylethanolamineâ€Mediated Regulatory Pathway in Plants. Chemistry and Biodiversity, 2007, 4, 1933-1955.	1.0	67

#	Article	IF	CITATIONS
127	Plant lipidomics: Discerning biological function by profiling plant complex lipids using mass spectrometry. Frontiers in Bioscience - Landmark, 2007, 12, 2494.	3.0	140
128	Plant fatty acid (ethanol) amide hydrolases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 324-334.	1.2	23
129	An intimate collaboration between peroxisomes and lipid bodies. Journal of Cell Biology, 2006, 173, 719-731.	2.3	329
130	Manipulation of Arabidopsis fatty acid amide hydrolase expression modifies plant growth and sensitivity to N-acylethanolamines. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12197-12202.	3.3	77
131	Similarities Between Endocannabinoid Signaling in Animal Systems and N-Acylethanolamine Metabolism in Plants. , 2006, , 205-219.		6
132	N-acylethanolamines in seeds of selected legumes. Phytochemistry, 2005, 66, 1913-1918.	1.4	56
133	Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth. Protoplasma, 2005, 226, 109-123.	1.0	92
134	Identification and quantification of glycerolipids in cotton fibers: Reconciliation with metabolic pathway predictions from DNA databases. Lipids, 2005, 40, 773-785.	0.7	71
135	Occurrence, metabolism, and prospective functions of N-acylethanolamines in plants. Progress in Lipid Research, 2004, 43, 302-327.	5.3	109
136	Identification and quantification of neuroactive N -acylethanolamines in cottonseed processing fractions. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 223-229.	0.8	14
137	Elevated levels of N-lauroylethanolamine, an endogenous constituent of desiccated seeds, disrupt normal root development in Arabidopsis thaliana seedlings. Planta, 2003, 217, 206-217.	1.6	80
138	N-Acylethanolamine Signaling in Tobacco Is Mediated by a Membrane-Associated, High-Affinity Binding Protein. Plant Physiology, 2003, 131, 1781-1791.	2.3	33
139	Molecular Identification of a Functional Homologue of the Mammalian Fatty Acid Amide Hydrolase in Arabidopsis thaliana. Journal of Biological Chemistry, 2003, 278, 34990-34997.	1.6	61
140	Inhibition of Phospholipase DÎ \pm byN-Acylethanolamines. Plant Physiology, 2002, 129, 1892-1898.	2.3	70
141	N-Acylethanolamines Are Metabolized by Lipoxygenase and Amidohydrolase in Competing Pathways during Cottonseed Imbibition. Plant Physiology, 2002, 130, 391-401.	2.3	44
142	Biochemical and Molecular Inhibition of Plastidial Carbonic Anhydrase Reduces the Incorporation of Acetate into Lipids in Cotton Embryos and Tobacco Cell Suspensions and Leaves. Plant Physiology, 2002, 128, 1417-1427.	2.3	65
143	Expression of a Gossypium hirsutum cDNA encoding a FatB palmitoyl-acyl carrier protein thioesterase in Escherichia coli. Plant Physiology and Biochemistry, 2002, 40, 1-9.	2.8	15
144	Regulation of carbonic anhydrase gene expression in cotyledons of cotton (Gossypium hirsutum L.) seedlings during post-germinative growth. Plant Molecular Biology, 2002, 49, 449-458.	2.0	14

#	Article	IF	CITATIONS
145	Transgenic cotton plants with increased seed oleic acid content. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 941-947.	0.8	76
146	Molecular cloning and functional expression of the gene for a cotton Δ-12 fatty acid desaturase (FAD2). Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1522, 122-129.	2.4	83
147	Emerging physiological roles for N-acylphosphatidylethanolamine metabolism in plants: signal transduction and membrane protection. Chemistry and Physics of Lipids, 2000, 108, 221-229.	1.5	106
148	Drug evaluations using neuronal networks cultured on microelectrode arrays. Biosensors and Bioelectronics, 2000, 15, 383-396.	5.3	138
149	A rapid phospholipase D assay using zirconium precipitation of anionic substrate phospholipids: application to N-acylethanolamine formation in vitro. Journal of Lipid Research, 2000, 41, 1532-1538.	2.0	30
150	Characterization of a Palmitoyl-Acyl Carrier Protein Thioesterase (FatB1) in Cotton. Plant and Cell Physiology, 1999, 40, 155-163.	1.5	24
151	N-Acylethanolamines in Seeds. Quantification of Molecular Species and Their Degradation upon Imbibition1. Plant Physiology, 1999, 120, 1157-1164.	2.3	67
152	Molecular cloning and nucleotide sequence of a gene encoding a cotton palmitoyl-acyl carrier protein thioesterase. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1446, 403-413.	2.4	9
153	Identification and Expression of Cotton (Gossypium hirsutum L.) Plastidial Carbonic Anhydrase. Plant and Cell Physiology, 1999, 40, 1262-1270.	1.5	13
154	N-Acylethanolamines in Signal Transduction of Elicitor Perception. Attenuation of Alkalinization Response and Activation of Defense Gene Expression. Plant Physiology, 1999, 121, 1299-1308.	2.3	65
155	Rapid in-vitro plant regeneration of cotton (Gossypium hirsutum L.). Plant Cell Reports, 1998, 17, 273-278.	2.8	48
156	Phospholipase activity during plant growth and development and in response to environmental stress. Trends in Plant Science, 1998, 3, 419-426.	4.3	169
157	Enzymology of cottonseed microsomal N-acylphosphatidylethanolamine synthase: Kinetic properties and mechanism-based inactivation. Lipids and Lipid Metabolism, 1998, 1390, 21-36.	2.6	15
158	Substrate Selectivities and Lipid Modulation of Plant Phospholipase Dα, -β, and -γ. Archives of Biochemistry and Biophysics, 1998, 353, 131-140.	1.4	150
159	N-Acylethanolamines: Formation and Molecular Composition of a New Class of Plant Lipids1. Plant Physiology, 1998, 116, 1163-1168.	2.3	77
160	Intracellular Localization of N-Acylphosphatidylethanolamine Synthesis in Cotyledons of Cotton (Gossypium hirsutm L.) Seedlings. Plant and Cell Physiology, 1997, 38, 1359-1367.	1.5	11
161	Phytoestrogens and floral development in dioecious Maclura pomifera (Raf.) Schneid. and Morus rubra L. (Moraceae). Plant Science, 1997, 130, 27-40.	1.7	14
162	Biochemical Characterization of Cottonseed Microsomal N-Acylphosphatidylethanolamine Synthase. , 1997, , 107-109.		0

#	ARTICLE	IF	CITATIONS
163	Developmental, tissue-specific, and environmental factors regulate the biosynthesis of N-acylphosphatidyl-ethanolamine in cotton (Gossypium hirsutum L.). Journal of Plant Physiology, 1996, 149, 277-284.	1.6	26
164	Increased N-acylphosphatidylethanolamine biosynthesis in elicitor-treated tobacco cells. Physiologia Plantarum, 1995, 95, 120-126.	2.6	18
165	Rapid purification of cotton seed membrane-bound N-acylphosphatidylethanolamine synthase by immobilized artificial membrane chromatography. Journal of Chromatography A, 1995, 696, 49-62.	1.8	28
166	N-Acylphosphatidylethanolamine in Dry and Imbibing Cottonseeds (Amounts, Molecular Species, and) Tj ETQq0	0 0 rgBT /0 2 .9	Overlock 10 T
167	Metabolism of Cottonseed Microsomal N-Acylphosphatidylethanolamine. Archives of Biochemistry and Biophysics, 1995, 318, 401-407.	1.4	32
168	Photoaffinity labeling of cottonseed microsomal N-acylphosphatidylethanolamine synthase protein with a substrate analogue, 12-[(4-azidosalicyl) amino]dodecanoic acid. Lipids and Lipid Metabolism, 1995, 1256, 310-318.	2.6	7
169	Differential estrogenic activities of male and female plant extracts from two dioecious species. Plant Science, 1995, 109, 31-43.	1.7	26
170	Biosynthesis of an Unusual Phospholipid, NAcyl-Phosphatidylethanolamine in Cotton Cotyledons. , 1995, , 216-218.		0
171	Increased N-acylphosphatidylethanolamine biosynthesis in elicitor-treated tobacco cells. Physiologia Plantarum, 1995, 95, 120-126.	2.6	1
172	Isozymes of cottonseed microsomal N-acylphosphatidylethanolamine synthase: Detergent solubilization and electrophoretic separation of active enzymes with different properties. Lipids and Lipid Metabolism, 1994, 1211, 29-36.	2.6	14
173	N-Acylphosphatidylethanolamine Synthesis in Plants: Occurrence, Molecular Composition, and Phospholipid Origin. Archives of Biochemistry and Biophysics, 1993, 301, 21-33.	1.4	74
174	Catalytic Properties of a Newly Discovered Acyltransferase That Synthesizes N-Acylphosphatidylethanolamine in Cottonseed (Gossypium hirsutum L.) Microsomes. Plant Physiology, 1993, 102, 761-769.	2.3	42
175	Intracellular Localization of Phosphatidylcholine and Phosphatidylethanolamine Synthesis in Cotyledons of Cotton Seedlings. Plant Physiology, 1991, 95, 69-76.	2.3	9
176	Acquisition of membrane lipids by differentiating glyoxysomes: role of lipid bodies Journal of Cell Biology, 1991, 115, 995-1007.	2.3	92
177	Inhibition of Cottonseed Choline- and Ethanolaminephosphotransferases by Calcium during Postgerminative Growth. Plant Physiology, 1990, 93, 1525-1529.	2.3	8
178	Relationship between Cottonseed Malate Synthase Aggregation Behavior and Suborganellar Location in Glyoxysomes and Endoplasmic Reticulum. Plant Physiology, 1989, 89, 352-359.	2.3	17
179	Similarities Between Endocannabinoid Signaling in Animal Systems and N-Acylethanolamine Metabolism in Plants. , 0, , 205-219.		0
180	Effective Mechanisms for Improving Seed Oil Production in Pennycress (Thlaspi arvense L.) Highlighted by Integration of Comparative Metabolomics and Transcriptomics. Frontiers in Plant Science, 0, 13, .	1.7	5