

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7414307/publications.pdf Version: 2024-02-01

ARTICLE IF CITATIONS Influence of processing parameters of selective laser melting on highâ€cycle and veryâ€highâ€cycle fatigue behaviour of Tiâ€6Alâ€4V. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 240-256. Weibull Modulus of Cleavage Fracture Toughness of Ferritic Steels. Metallurgical and Materials 9 2.2 2 Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 1503-1515. Fatigue failures from defects in additive manufactured components: A statistical methodology for the analysis of the experimental results. Fatigue and Fracture of Engineering Materials and Structures, 3.4 2021, 44, 1944-1960. Very high cycle fatigue (VHCF) response of additively manufactured materials: A review. Fatigue and 4 3.4 20 Fracture of Engineering Materials and Structures, 2021, 44, 2919-2943. Fatigue model of domestic 316LN steel in simulated primary coolant environment of CAP1400. 5.7 International Journal of Fatigue, 2020, 130, 105297 In-situ investigation on fatigue behaviors of Ti-6Al-4V manufactured by selective laser melting. 5.7 60 6 International Journal of Fatigue, 2020, 133, 105424. Very-high-cycle fatigue behavior of AlSi10Mg manufactured by selective laser melting: Effect of build 5.7 orientation and mean stress. International Journal of Fatigue, 2020, 138, 105696. C(t) dominance of the mixed I/II creep crack: Part II. Extensive creep. Theoretical and Applied Fracture 8 4.7 4 Mechanics, 2020, 106, 102489. Very-high-cycle fatigue behavior of Ti-6Al-4V manufactured by selective laser melting: Effect of build 5.7 orientation. International Journal of Fatigue, 2020, 136, 105628. C(t) dominance of the mixed I/II creep crack: Part I. Transient creep. Theoretical and Applied Fracture 10 4.7 7 Mechanics, 2019, 103, 102314. Weibull stress analysis in local approach to fracture. Theoretical and Applied Fracture Mechanics, 4.7 2019, 104, 102379. Specimen size effect on the ductile-brittle transition reference temperature of A508-3 steel. 12 4.7 13 Theoretical and Applied Fracture Mechanics, 2019, 104, 102370. Irradiation effect on impact fracture behavior of A508-3 steel in ductile-to-brittle transition range. 4.0 Engineering Failure Analysis, 2019, 97, 836-843. In-situ SEM investigation on fatigue behaviors of additive manufactured Al-Si10-Mg alloy at elevated 14 4.3 63 temperature. Engineering Fracture Mechanics, 2019, 214, 149-163. A Statistical Model of Cleavage Fracture Toughness of Ferritic Steel DIN 22NiMoCr37 at Different Temperatures. Materials, 2019, 12, 982. Statistical size scaling of breakage strength of irregularly-shaped particles. Theoretical and Applied Fracture Mechanics, 2019, 102, 51-58. 16 4.7 32 A simplified method for parameters calibration of the new local approach model for cleavage 4.7 fracture in a ferritic steel. Theoretical and Applied Fracture Mechanics, 2019, 100, 426-433. Study on cleavage fracture probability-load curves of ferritic steel 20MnMoNi55 by using the new 18 2.6 2 local approach model. International Journal of Pressure Vessels and Piping, 2019, 178, 103999.

Guian

#	Article	IF	CITATIONS
19	On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels. Philosophical Magazine, 2018, 98, 959-1004.	1.6	78
20	Nonâ€proportional size scaling of strength of concrete in uniaxial and biaxial loading conditions. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 1733-1745.	3.4	14
21	Effects of embedded cracks and residual stresses on the integrity of a reactor pressure vessel. Engineering Failure Analysis, 2018, 90, 451-462.	4.0	12
22	Statistical assessment of notch toughness against cleavage fracture of ferritic steels. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 1120-1131.	3.4	62
23	Comparison of constraint analyses with global and local approaches under uniaxial and biaxial loadings. European Journal of Mechanics, A/Solids, 2018, 69, 135-146.	3.7	68
24	Mechanical Properties of 3D Isotropic Antiâ€Tetrachiral Metastructure. Physica Status Solidi (B): Basic Research, 2018, 255, 1700343.	1.5	29
25	Effect of nonâ€uniform reactor cooling on fracture and constraint of a reactor pressure vessel. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 1559-1575.	3.4	27
26	A new local approach to cleavage fracture and its application in a reactor pressure vessel. Procedia Structural Integrity, 2018, 13, 2174-2179.	0.8	1
27	Deformation mechanism of innovative 3D chiral metamaterials. Scientific Reports, 2018, 8, 12575.	3.3	48
28	Calibration of a new local approach to cleavage fracture of ferritic steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 694, 10-12.	5.6	10
29	Integrity analysis of a reactor pressure vessel subjected to a realistic pressurized thermal shock considering the cooling plume and constraint effects. Engineering Fracture Mechanics, 2016, 162, 201-217.	4.3	20
30	Probabilistic ageing and risk analysis tools for nuclear piping. Nuclear Engineering and Design, 2016, 300, 541-551.	1.7	4
31	Probabilistic Pressurized Thermal Shock Analysis for a Reactor Pressure Vessel Considering Plume Cooling Effect. Journal of Pressure Vessel Technology, Transactions of the ASME, 2016, 138, .	0.6	4
32	Coupled RELAP5, 3D CFD and FEM analysis of postulated cracks in RPVs subjected to PTS loading. Nuclear Engineering and Design, 2016, 297, 111-122.	1.7	14
33	Investigation of constraint and warm prestressing effects by means of a local approach to fracture. Engineering Fracture Mechanics, 2015, 136, 26-37.	4.3	13
34	Calibration of Beremin model with the Master Curve. Engineering Fracture Mechanics, 2015, 136, 15-25.	4.3	22
35	Comparison of PTS analyses of RPVs based on 3D-CFD and RELAP5. Nuclear Engineering and Design, 2015, 291, 168-178.	1.7	28
36	Probabilistic assessment of a reactor pressure vessel subjected to pressurized thermal shocks by using crack distributions. Nuclear Engineering and Design, 2014, 270, 312-324.	1.7	21

Guian

#	Article	IF	CITATIONS
37	Deterministic and probabilistic analysis of a reactor pressure vessel subjected to pressurized thermal shocks. Nuclear Engineering and Design, 2014, 273, 381-395.	1.7	54
38	In-plane and out-of-plane constraint effects under pressurized thermal shocks. International Journal of Solids and Structures, 2014, 51, 1311-1321.	2.7	44
39	Integrity analysis of a reactor pressure vessel subjected to pressurized thermal shocks by considering constraint effect. Engineering Fracture Mechanics, 2013, 112-113, 14-25.	4.3	49
40	Procedures, methods and computer codes for the probabilistic assessment of reactor pressure vessels subjected to pressurized thermal shocks. Nuclear Engineering and Design, 2013, 258, 35-50.	1.7	55
41	Probabilistic analysis of pipelines with corrosion defects by using FITNET FFS procedure. Corrosion Science, 2011, 53, 855-861.	6.6	51
42	Probabilistic fracture assessment of piping systems based on FITNET FFS procedure. Nuclear Engineering and Design, 2011, 241, 714-722.	1.7	17