Guoxiang Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7414227/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	LcNAC13 Physically Interacts with LcR1MYB1 to Coregulate Anthocyanin Biosynthesis-Related Genes during Litchi Fruit Ripening. Biomolecules, 2019, 9, 135.	1.8	44
2	Redox regulation of methionine in calmodulin affects the activity levels of senescence-related transcription factors in litchi. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1140-1151.	1.1	39
3	β-Aminobutyric Acid Priming Acquisition and Defense Response of Mango Fruit to Colletotrichum gloeosporioides Infection Based on Quantitative Proteomics. Cells, 2019, 8, 1029.	1.8	32
4	Litchi Fruit LcNAC1 is a Target of LcMYC2 and Regulator of Fruit Senescence Through its Interaction with LcWRKY1. Plant and Cell Physiology, 2017, 58, 1075-1089.	1.5	30
5	Cell wall proteome analysis of banana fruit softening using iTRAQ technology. Journal of Proteomics, 2019, 209, 103506.	1.2	26
6	Sulfoxidation Regulation of Musa acuminata Calmodulin (MaCaM) Influences the Functions of MaCaM-Binding Proteins. Plant and Cell Physiology, 2018, 59, 1214-1224.	1.5	25
7	SIJMJ7 orchestrates tomato fruit ripening via crosstalk between H3K4me3 and DML2â€mediated DNA demethylation. New Phytologist, 2022, 233, 1202-1219.	3.5	25
8	Comparative Transcriptome Analysis of Penicillium citrinum Cultured with Different Carbon Sources Identifies Genes Involved in Citrinin Biosynthesis. Toxins, 2017, 9, 69.	1.5	23
9	Characteristics of Three Thioredoxin Genes and Their Role in Chilling Tolerance of Harvested Banana Fruit. International Journal of Molecular Sciences, 2016, 17, 1526.	1.8	17
10	Redox regulation of glutathione peroxidase by thioredoxin in longan fruit in relation to senescence and quality deterioration. Food Chemistry, 2021, 345, 128664.	4.2	9
11	Energy homeostasis mediated by the <scp>LcSnRK1α</scp> – <scp>LcbZIP1</scp> /3 signaling pathway modulates litchi fruit senescence. Plant Journal, 2022, 111, 698-712.	2.8	8
12	The effect of ethylene on squalene and \hat{l}^2 -sitosterol biosynthesis and its key gene network analysis in Torreya grandis nuts during post-ripening process. Food Chemistry, 2022, 368, 130819.	4.2	7
13	Proteome-wide identification of non-histone lysine methylation in tomato during fruit ripening. Journal of Advanced Research, 2022, 42, 177-188.	4.4	5