Patricia Benito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7414165/publications.pdf Version: 2024-02-01

DATRICIA RENITO

#	Article	IF	CITATIONS
1	Influence of microwave radiation on the textural properties of layered double hydroxides. Microporous and Mesoporous Materials, 2006, 94, 148-158.	4.4	104
2	Alkali-bonded ceramics with hierarchical tailored porosity. Applied Clay Science, 2013, 73, 56-64.	5.2	104
3	Zeolite-geopolymer composite materials: Production and characterization. Journal of Cleaner Production, 2018, 171, 76-84.	9.3	98
4	Characterization of novel geopolymer – Zeolite composites as solid adsorbents for CO2 capture. Chemical Engineering Journal, 2018, 341, 505-515.	12.7	96
5	Nanosize cobalt oxide-containing catalysts obtained through microwave-assisted methods. Catalysis Today, 2007, 128, 129-137.	4.4	84
6	Microwave-Assisted Homogeneous Precipitation of Hydrotalcites by Urea Hydrolysis. Inorganic Chemistry, 2008, 47, 5453-5463.	4.0	76
7	Hydrotalcite-type precursors of active catalysts for hydrogen production. Applied Clay Science, 2010, 48, 250-259.	5.2	72
8	Microwave-hydrothermally aged Zn,Al hydrotalcite-like compounds: Influence of the composition and the irradiation conditions. Microporous and Mesoporous Materials, 2008, 110, 292-302.	4.4	70
9	Effect of metallic Si addition on polymerization degree of in situ foamed alkali-aluminosilicates. Ceramics International, 2013, 39, 7657-7668.	4.8	68
10	Uniform Fast Growth of Hydrotalcite-like Compounds. Crystal Growth and Design, 2006, 6, 1961-1966.	3.0	66
11	Synthesis of porous hierarchical geopolymer monoliths byÂice-templating. Microporous and Mesoporous Materials, 2015, 215, 206-214.	4.4	65
12	Stabilization of Co2+ in layered double hydroxides (LDHs) by microwave-assisted ageing. Journal of Solid State Chemistry, 2007, 180, 873-884.	2.9	62
13	Production of carbon nanotubes from methaneUse of Co-Zn-Al catalysts prepared by microwave-assisted synthesis. Chemical Engineering Journal, 2009, 149, 455-462.	12.7	62
14	Microwave-treated layered double hydroxides containing Ni2+ and Al3+: The effect of added Zn2+. Journal of Solid State Chemistry, 2006, 179, 3784-3797.	2.9	59
15	FeCrAl as a Catalyst Support. Chemical Reviews, 2020, 120, 7516-7550.	47.7	59
16	Effect of post-synthesis microwave–hydrothermal treatment on the properties of layered double hydroxides and related materials. Applied Clay Science, 2010, 48, 218-227.	5.2	57
17	Microwave-assisted reconstruction of Ni,Al hydrotalcite-like compounds. Journal of Solid State Chemistry, 2008, 181, 987-996.	2.9	49
18	Electrochemical synthesis of novel structured catalysts for H2 production. Applied Catalysis B: Environmental, 2009, 91, 563-572.	20.2	46

#	Article	IF	CITATIONS
19	Understanding structure-activity relationships in highly active La promoted Ni catalysts for CO2 methanation. Applied Catalysis B: Environmental, 2020, 278, 119256.	20.2	46
20	Tunable copper-hydrotalcite derived mixed oxides for sustainable ethanol condensation to n-butanol in liquid phase. Journal of Cleaner Production, 2019, 209, 1614-1623.	9.3	43
21	Combined Use of Synchrotronâ€Radiationâ€Based Imaging Techniques for the Characterization of Structured Catalysts. Advanced Functional Materials, 2010, 20, 4117-4126.	14.9	40
22	Novel Rh-based structured catalysts for the catalytic partial oxidation of methane. Catalysis Today, 2010, 157, 183-190.	4.4	40
23	Platinum supported on alkaline and alkaline earth metal-doped alumina as catalysts for dry reforming and partial oxidation of methane. Applied Catalysis A: General, 2012, 433-434, 1-11.	4.3	40
24	Microwaves and layered double hydroxides: A smooth understanding. Pure and Applied Chemistry, 2009, 81, 1459-1471.	1.9	38
25	Carboxylate-intercalated layered double hydroxides aged under microwave–hydrothermal treatment. Journal of Solid State Chemistry, 2009, 182, 18-26.	2.9	36
26	Structural characterization and thermal properties of polyamide 6.6/Mg, Al/adipate-LDH nanocomposites obtained by solid state polymerization. Journal of Solid State Chemistry, 2010, 183, 1645-1651.	2.9	36
27	AgCu Bimetallic Electrocatalysts for the Reduction of Biomass-Derived Compounds. ACS Applied Materials & Interfaces, 2021, 13, 23675-23688.	8.0	35
28	Highly conductive Ni steam reforming catalysts prepared by electrodeposition. Chemical Communications, 2008, , 2917.	4.1	34
29	Role of the composition and preparation method inÂthe activity of hydrotalcite-derived Ru catalysts in the catalytic partial oxidation of methane. International Journal of Hydrogen Energy, 2013, 38, 15128-15139.	7.1	33
30	Bimetallic Nanoparticles as Efficient Catalysts: Facile and Green Microwave Synthesis. Materials, 2016, 9, 550.	2.9	33
31	Synthesis of isopropyl levulinate from furfural: Insights on a cascade production perspective. Applied Catalysis A: General, 2019, 575, 111-119.	4.3	29
32	Insights into the macroporosity of freeze-cast hierarchical geopolymers. RSC Advances, 2016, 6, 24635-24644.	3.6	27
33	One-step electrodeposition of Pd–CeO ₂ on high pore density foams for environmental catalytic processes. Catalysis Science and Technology, 2018, 8, 4678-4689.	4.1	25
34	Effect of silicates on the structure of Ni-containing catalysts obtained from hydrotalcite-type precursors. Catalysis Today, 2007, 128, 258-263.	4.4	24
35	N2O catalytic decomposition on electrodeposited Rh-based open-cell metallic foams. Chemical Engineering Journal, 2020, 379, 122259.	12.7	24
36	A novel electrochemical route for the catalytic coating of metallic supports. Studies in Surface Science and Catalysis, 2010, , 51-58.	1.5	23

#	Article	IF	CITATIONS
37	Role of Coating-Metallic Support Interaction in the Properties of Electrosynthesized Rh-Based Structured Catalysts. ACS Catalysis, 2014, 4, 3779-3790.	11.2	23
38	Ag Electrodeposited on Cu Openâ€Cell Foams for the Selective Electroreduction of 5â€Hydroxymethylfurfural. ChemElectroChem, 2020, 7, 1238-1247.	3.4	23
39	Incidence of Microwave Hydrothermal Treatments on the Crystallinity Properties of Hydrotalciteâ€ike Compounds. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 1815-1819.	1.2	22
40	Ni-catalysts obtained from silicate intercalated HTlcs active in the catalytic partial oxidation of methane: Influence of the silicate content. Catalysis Today, 2009, 142, 78-84.	4.4	22
41	Electrosynthesis of Ni/Al and Mg/Al Layered Double Hydroxides on Pt and FeCrAlloy supports: Study and control of the pH near the electrode surface. Electrochimica Acta, 2013, 108, 596-604.	5.2	22
42	Improvement in the coating homogeneity in electrosynthesized Rh structured catalysts for the partial oxidation of methane. Catalysis Today, 2015, 246, 154-164.	4.4	22
43	Coating of FeCrAlloy foam with Rh catalysts: Optimization of electrosynthesis parameters and catalyst composition. Catalysis Today, 2012, 197, 162-169.	4.4	21
44	Stable Rh particles in hydrotalcite-derived catalysts coated on FeCrAlloy foams by electrosynthesis. Applied Catalysis B: Environmental, 2015, 179, 321-332.	20.2	21
45	Steam reforming of hot gas from gasified wood types and miscanthus biomass. Biomass and Bioenergy, 2011, 35, S116-S122.	5.7	20
46	Preparation of Pd/Cu MCM-41 catalysts for hydrodechlorination: Influence of the synthesis procedure. Microporous and Mesoporous Materials, 2014, 190, 1-9.	4.4	18
47	Electrodeposition of CeO2 and Pd-CeO2 on small pore size metallic foams: Selection of deposition parameters. Catalysis Today, 2019, 334, 37-47.	4.4	17
48	Combustion study of partially gasified willow and DDGS chars using TG analysis and COMSOL modeling. Biomass and Bioenergy, 2012, 39, 356-369.	5.7	16
49	Coprecipitation versus chemical vapour deposition to prepare Rh/Ni bimetallic catalysts. Applied Catalysis B: Environmental, 2015, 179, 150-159.	20.2	16
50	Coprecipitated-like hydrotalcite-derived coatings on open-cell metallic foams by electrodeposition: Rh nanoparticles on oxide layers stable under harsh reaction conditions. Applied Catalysis A: General, 2018, 560, 12-20.	4.3	16
51	High temperature water-gas shift step in the production of clean hydrogen rich synthesis gas from gasified biomass. Biomass and Bioenergy, 2011, 35, S123-S131.	5.7	15
52	Pd–Cu interaction in Pd/Cu-MCM-41 catalysts: Effect of silica source and metal content. Catalysis Today, 2015, 246, 108-115.	4.4	15
53	Reactions involved in the electrodeposition of hydrotalcite-type compounds on FeCrAlloy foams and plates. Electrochimica Acta, 2016, 222, 1335-1344.	5.2	15
54	Geopolymer composites for the catalytic cleaning of tar in biomass-derived gas. Renewable Energy, 2019, 131, 1107-1116.	8.9	15

4

#	Article	IF	CITATIONS
55	The reducibility of highly stable Ni-containing species in catalysts derived from hydrotalcite-type precursors. RSC Advances, 2015, 5, 82282-82291.	3.6	14
56	Insights into the Electrochemical Reduction of 5â€Hydroxymethylfurfural at High Current Densities. ChemSusChem, 2022, 15, .	6.8	14
57	Steam–O ₂ Blown Circulating Fluidized-Bed (CFB) Biomass Gasification: Characterization of Different Residual Chars and Comparison of Their Gasification Behavior to Thermogravimetric (TG)-Derived Pyrolysis Chars. Energy & Fuels, 2012, 26, 722-739.	5.1	12
58	Role of the preparation method on properties of Pd/Cu-MCM-41 hydrodechlorinating catalysts. Catalysis Today, 2014, 235, 134-143.	4.4	12
59	Nickel-substituted bariumhexaaluminates as novel catalysts in steam reforming of tars. Fuel Processing Technology, 2015, 140, 1-11.	7.2	12
60	Structured Catalysts-Based on Open-Cell Metallic Foams for Energy and Environmental Applications. Studies in Surface Science and Catalysis, 2019, , 303-327.	1.5	12
61	Steam reforming of clean biogas over Rh and Ru open-cell metallic foam structured catalysts. Catalysis Today, 2022, 383, 74-83.	4.4	11
62	Deactivation of a Ni-Based Reforming Catalyst During the Upgrading of the Producer Gas, from Simulated to Real Conditions. Topics in Catalysis, 2011, 54, 746-754.	2.8	10
63	Ru–CeO ₂ and Ni–CeO ₂ Coated on Open-Cell Metallic Foams by Electrodeposition for the CO ₂ Methanation. Industrial & Engineering Chemistry Research, 2021, 60, 6730-6741.	3.7	10
64	Dispersion characterization in layered double hydroxide/Nylon 66 nanocomposites using FIB imaging. Journal of Applied Polymer Science, 2008, 108, 4108-4113.	2.6	9
65	Effect of Fe and La on the Performance of NiMgAl HT-Derived Catalysts in the Methanation of CO ₂ and Biogas. Industrial & Engineering Chemistry Research, 2022, 61, 10511-10521.	3.7	9
66	Effect of metal nitrate concentration on the electrodeposition of hydrotalcite-like compounds on open-cell foams. Applied Clay Science, 2018, 151, 109-117.	5.2	8
67	Insights into coated NiCrAl open-cell foams for the catalytic partial oxidation of CH ₄ . Reaction Chemistry and Engineering, 2019, 4, 1768-1778.	3.7	8
68	Open-cell foams coated by Ni/X/Al hydrotalcite-type derived catalysts (X = Ce, La, Y) for CO2 methanation. Journal of CO2 Utilization, 2020, 42, 101327.	6.8	8
69	Promotion effect of rare earth elements (Ce, Nd, Pr) on physicochemical properties of M-Al mixed oxides (M = Cu, Ni, Co) and their catalytic activity in N2O decomposition. Journal of Materials Science, 2021, 56, 15012-15028.	3.7	8
70	Incidencia de la radiación microondas en la cristalinidad de materiales laminares. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2004, 43, 56-58.	1.9	7
71	Catalytic Upgrading of Clean Biogas to Synthesis Gas. Catalysts, 2022, 12, 109.	3.5	7
72	Effect of Neodymium on the Physicoâ€chemical Properties and N 2 O Decomposition Activity of Co(Cu)â^'Al Mixed Oxides. ChemCatChem, 2019, 11, 5580-5592.	3.7	6

#	Article	IF	CITATIONS
73	Ba-Ni-Hexaaluminate as a New Catalyst in the Steam Reforming of 1-Methyl Naphthalene and Methane. Catalysis Letters, 2020, 150, 1605-1617.	2.6	5
74	Evaluation of effect of soil organic matter on pores by <scp>¹H</scp> timeâ€domain magnetic resonance relaxometry and adsorption–desorption of <scp>N₂</scp> . European Journal of Soil Science, 2016, 67, 314-323.	3.9	4
75	Coating of Rh/Mg/Al Hydrotalciteâ€Like Materials on FeCrAl Fibers by Electrodeposition and Application for Syngas Production. Energy Technology, 2020, 8, 1901018.	3.8	4
76	Microwave-assisted catalysts for the CPO of methane. Studies in Surface Science and Catalysis, 2006, 162, 761-768.	1,5	3
77	Electrodeposition of Rh/Mg/Al hydroxides with different Mg-contents on metallic foams as catalyst precursors. Applied Clay Science, 2020, 191, 105599.	5.2	3
78	Bagasse gasification in a 100 kWthsteam-oxygen blown circulating fluidized bed gasifier with catalytic and non-catalytic upgrading of the syngas using ceramic filters. , 2014, , .		3
79	Influence of the Microwave Radiation on the Thermal Properties of Ni,Al Hydrotalcite-Like Compounds. Materials Science Forum, 2006, 514-516, 1284-1288.	0.3	1
80	Insights into the Synthesis and Surface Functionalization of Mesoporous Carbon for Catalytic Applications. ChemistrySelect, 2017, 2, 7590-7596.	1.5	1
81	Hydrotalcite-Type Materials Electrodeposited on Open-Cell Metallic Foams as Structured Catalysts. Inorganics, 2018, 6, 74.	2.7	1
82	Co-Containing LDHs Synthesized by the Microwave-Hydrothermal Method. Materials Science Forum, 2006, 514-516, 1241-1245.	0.3	0
83	Electrochemical Preparation of Pd Seeds/Inorganic Multilayers on Structured Metallic Fibres. , 2011, , 409-418.		0