
Timothy J Koh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/741415/publications.pdf Version: 2024-02-01

Τιμοτην Ι Κομ

#	Article	IF	CITATIONS
1	Targeting the NOD-Like Receptor Pyrin Domain Containing 3 Inflammasome to Improve Healing of Diabetic Wounds. Advances in Wound Care, 2023, 12, 644-656.	2.6	7
2	Liver is a primary source of insulin-like growth factor-1 in skin wound healing. Journal of Endocrinology, 2022, 252, 59-70.	1.2	9
3	Utilisation of skin blood flow as a precursor for pressure injury development in persons with acute spinal cord injury: A proof of concept. International Wound Journal, 2022, 19, 2191-2199.	1.3	3
4	Parameter-Dependency of Low-Intensity Vibration for Wound Healing in Diabetic Mice. Frontiers in Bioengineering and Biotechnology, 2021, 9, 654920.	2.0	9
5	Reduced apoptosis of monocytes and macrophages is associated with their persistence in wounds of diabetic mice. Cytokine, 2021, 142, 155516.	1.4	6
6	Regenerative effect of platelet-rich plasma in the murine ischemic limbs. Life Sciences, 2021, 284, 119934.	2.0	1
7	Macrophages in Healing Wounds: Paradoxes and Paradigms. International Journal of Molecular Sciences, 2021, 22, 950.	1.8	44
8	Enhanced Proliferation of Ly6C+ Monocytes/Macrophages Contributes to Chronic Inflammation in Skin Wounds of Diabetic Mice. Journal of Immunology, 2021, 206, 621-630.	0.4	25
9	Proliferation of Ly6C+ monocytes/macrophages contributes to their accumulation in mouse skin wounds. Journal of Leukocyte Biology, 2020, 107, 551-560.	1.5	21
10	Macrophage Dysregulation and Impaired Skin Wound Healing in Diabetes. Frontiers in Cell and Developmental Biology, 2020, 8, 528.	1.8	75
11	Bone marrow monopoiesis and wound healing in diabetes. , 2020, , 535-553.		Ο
12	CCL28â€induced CCR10/eNOS interaction in angiogenesis and skin wound healing. FASEB Journal, 2020, 34, 5838-5850.	0.2	12
13	Local lowâ€intensity vibration improves healing of muscle injury in mice. Physiological Reports, 2020, 8, e14356.	0.7	7
14	Diabetes induces myeloid bias in bone marrow progenitors associated with enhanced wound macrophage accumulation and impaired healing. Journal of Pathology, 2019, 249, 435-446.	2.1	40
15	Expression of genes in the skeletal muscle of individuals with cachexia/sarcopenia: A systematic review. PLoS ONE, 2019, 14, e0222345.	1.1	13
16	Skin Wounding–Induced Monocyte Expansion in Mice Is Not Abrogated by IL-1 Receptor 1 Deficiency. Journal of Immunology, 2019, 202, 2720-2727.	0.4	13
17	New Peroxisome Proliferator-Activated Receptor Agonist (GQ-11) Improves Wound Healing in Diabetic Mice. Advances in Wound Care, 2019, 8, 417-428.	2.6	10
18	Increased skin blood flow during low intensity vibration in human participants: Analysis of control mechanisms using short-time Fourier transform. PLoS ONE, 2018, 13, e0200247.	1.1	15

#	Article	IF	CITATIONS
19	Oxidant Signaling Mediated by Nox2 in Neutrophils Promotes Regenerative Myelopoiesis and Tissue Recovery following Ischemic Damage. Journal of Immunology, 2018, 201, 2414-2426.	0.4	13
20	Low-Intensity Vibration Improves Muscle Healing in a Mouse Model of Laceration Injury. Journal of Functional Morphology and Kinesiology, 2018, 3, 1.	1.1	21
21	Quercus infectoria inhibits Set7/NF-κB inflammatory pathway in macrophages exposed to a diabetic environment. Cytokine, 2017, 94, 29-36.	1.4	28
22	Macrophage-based therapeutic strategies in regenerative medicine. Advanced Drug Delivery Reviews, 2017, 122, 74-83.	6.6	234
23	Thrombospondin-1 and disease progression in dysferlinopathy. Human Molecular Genetics, 2017, 26, 4951-4960.	1.4	7
24	Advanced Technologies to Improve Wound Healing: Electrical Stimulation, Vibration Therapy, and Ultrasound—What Is the Evidence?. Plastic and Reconstructive Surgery, 2016, 138, 94S-104S.	0.7	48
25	MicroCT angiography detects vascular formation and regression in skin wound healing. Microvascular Research, 2016, 106, 57-66.	1.1	15
26	Thrombospondin-1 levels correlate with macrophage activity and disease progression in dysferlin deficient mice. Neuromuscular Disorders, 2016, 26, 240-251.	0.3	13
27	Diabetes medications: Impact on inflammation and wound healing. Journal of Diabetes and Its Complications, 2016, 30, 746-752.	1.2	127
28	Low-intensity vibrations accelerate proliferation and alter macrophage phenotype in vitro. Journal of Biomechanics, 2016, 49, 793-796.	0.9	21
29	Macrophage PPARÎ ³ and impaired wound healing in type 2 diabetes. Journal of Pathology, 2015, 236, 433-444.	2.1	128
30	The murine excisional wound model: Contraction revisited. Wound Repair and Regeneration, 2015, 23, 874-877.	1.5	119
31	Nod-Like Receptor Protein-3 Inflammasome Plays an Important Role during Early Stages of Wound Healing. PLoS ONE, 2015, 10, e0119106.	1.1	74
32	Modulation of bone's sensitivity to low-intensity vibrations by acceleration magnitude, vibration duration, and number of bouts. Osteoporosis International, 2015, 26, 1417-1428.	1.3	13
33	High and Low Molecular Weight Hyaluronic Acid Differentially Influence Macrophage Activation. ACS Biomaterials Science and Engineering, 2015, 1, 481-493.	2.6	427
34	Contributions of cell subsets to cytokine production during normal and impaired wound healing. Cytokine, 2015, 71, 409-412.	1.4	72
35	Low-Intensity Vibration Improves Angiogenesis and Wound Healing in Diabetic Mice. PLoS ONE, 2014, 9, e91355.	1.1	76
36	Sustained Inflammasome Activity in Macrophages Impairs Wound Healing in Type 2 Diabetic Humans and Mice. Diabetes, 2014, 63, 1103-1114.	0.3	227

#	Article	IF	CITATIONS
37	Macrophage activation and skeletal muscle healing following traumatic injury. Journal of Pathology, 2014, 232, 344-355.	2.1	163
38	Blocking Interleukin-1β Induces a Healing-Associated Wound Macrophage Phenotype and Improves Healing in Type 2 Diabetes. Diabetes, 2013, 62, 2579-2587.	0.3	320
39	Phenotypic Transitions of Macrophages Orchestrate Tissue Repair. American Journal of Pathology, 2013, 183, 1352-1363.	1.9	293
40	Assessing Macrophage Phenotype During Tissue Repair. Methods in Molecular Biology, 2013, 1037, 507-518.	0.4	16
41	Macrophage phenotypes during tissue repair. Journal of Leukocyte Biology, 2013, 93, 875-881.	1.5	497
42	Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice. Cytokine, 2011, 56, 256-264.	1.4	241
43	Inflammation and wound healing: the role of the macrophage. Expert Reviews in Molecular Medicine, 2011, 13, e23.	1.6	1,160
44	Impaired Muscle Regeneration in Ob/ob and Db/db Mice. Scientific World Journal, The, 2011, 11, 1525-1535.	0.8	94
45	Macrophage-Specific Expression of Urokinase-Type Plasminogen Activator Promotes Skeletal Muscle Regeneration. Journal of Immunology, 2011, 187, 1448-1457.	0.4	37
46	Functional and physical interaction between the selenium-binding protein 1 (SBP1) and the glutathione peroxidase 1 selenoprotein. Carcinogenesis, 2010, 31, 1360-1366.	1.3	75
47	uPA and macrophages in muscle regeneration. FASEB Journal, 2010, 24, 801.34.	0.2	0
48	COX-2 inhibitor reduces skeletal muscle hypertrophy in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1132-R1139.	0.9	68
49	Selective and Specific Macrophage Ablation Is Detrimental to Wound Healing in Mice. American Journal of Pathology, 2009, 175, 2454-2462.	1.9	528
50	Urokinase-type plasminogen activator increases hepatocyte growth factor activity required for skeletal muscle regeneration. Blood, 2009, 114, 5052-5061.	0.6	44
51	Regulation of cadherin-based epithelial cell adhesion by endocytosis. Frontiers in Bioscience - Elite, 2009, 1, 61.	0.9	19
52	Urokinase-Type Plasminogen Activator Plays Essential Roles in Macrophage Chemotaxis and Skeletal Muscle Regeneration. Journal of Immunology, 2008, 180, 1179-1188.	0.4	73
53	Endogenous interferon-Î ³ is required for efficient skeletal muscle regeneration. American Journal of Physiology - Cell Physiology, 2008, 294, C1183-C1191.	2.1	173
54	The urokinase-type plasminogen activator receptor is not required for skeletal muscle inflammation or regeneration. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1152-R1158.	0.9	14

#	Article	IF	CITATIONS
55	Urokinase-type plasminogen activator and macrophages are required for skeletal muscle hypertrophy in mice. American Journal of Physiology - Cell Physiology, 2007, 293, C1278-C1285.	2.1	64
56	Mechanical strain increases gene transfer to skeletal muscle cells. Journal of Biomechanics, 2007, 40, 1995-2001.	0.9	5
57	Interplay between neutrophils and skeletal muscle after exercise. What's going on?. , 2006, , 32-33.		1
58	uPA and inflammation in skeletal muscle hypertrophy. FASEB Journal, 2006, 20, A802.	0.2	1
59	Neutrophils contribute to muscle injury and impair its resolution after lengthening contractions in mice. Journal of Physiology, 2005, 562, 899-913.	1.3	179
60	Mice deficient in plasminogen activator inhibitor-1 have improved skeletal muscle regeneration. American Journal of Physiology - Cell Physiology, 2005, 289, C217-C223.	2.1	61
61	Cytoskeletal disruption and small heat shock protein translocation immediately after lengthening contractions. American Journal of Physiology - Cell Physiology, 2004, 286, C713-C722.	2.1	153
62	HSP25 protects skeletal muscle cells against oxidative stress. Free Radical Biology and Medicine, 2004, 37, 1455-1462.	1.3	83
63	Passive Stretches Protect Skeletal Muscle of Adult and Old Mice From Lengthening Contraction-Induced Injury. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2003, 58, B592-B597.	1.7	42
64	Improved transfection technique for adherent cells using a commercial lipid reagent. BioTechniques, 2003, 35, 936-940.	0.8	22
65	Muscle inflammatory cells after passive stretches, isometric contractions, and lengthening contractions. Journal of Applied Physiology, 2002, 92, 1873-1878.	1.2	137
66	Do Small Heat Shock Proteins Protect Skeletal Muscle from Injury?. Exercise and Sport Sciences Reviews, 2002, 30, 117-121.	1.6	76
67	Lengthening contractions are not required to induce protection from contraction-induced muscle injury. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R155-R161.	0.9	81
68	Specificity and Plasticity of Mammalian Skeletal Muscles. Journal of Applied Biomechanics, 2000, 16, 98-109.	0.3	8
69	Eccentric training does not increase sarcomere number in rabbit dorsiflexor muscles. Journal of Biomechanics, 1998, 31, 499-501.	0.9	32
70	Increasing the moment arm of the tibialis anterior induces structural and functional adaptation. Journal of Biomechanics, 1998, 31, 593-599.	0.9	31
71	Three-Dimensional in Vivo Kinematics of the Shoulder during Humeral Elevation. Journal of Applied Biomechanics, 1998, 14, 312-326.	0.3	24
72	An implantable electrical interface for in vivo studies of the neuromuscular system. Journal of Neuroscience Methods, 1996, 70, 27-32.	1.3	12

#	Article	IF	CITATIONS
73	Do adaptations in serial sarcomere number occur with strength training?. Human Movement Science, 1995, 14, 61-77.	0.6	22
74	Evaluation of voluntary and elicited dorsiflexor torque-angle relationships. Journal of Applied Physiology, 1995, 79, 2007-2013.	1.2	26
75	Effect of an Ankle Orthosis and Ankle Ligament Anesthesia on Ankle Joint Proprioception. American Journal of Sports Medicine, 1994, 22, 223-229.	1.9	213
76	A panning DLT procedure for three-dimensional videography. Journal of Biomechanics, 1993, 26, 741-751.	0.9	17
77	Kinematics of Recovery From a Stumble. Journal of Gerontology, 1993, 48, M97-M102.	2.0	142
78	Bilateral deficit is larger for step than for ramp isometric contractions. Journal of Applied Physiology, 1993, 74, 1200-1205.	1.2	86
79	Technique and ground reaction forces in the back handspring. American Journal of Sports Medicine, 1992, 20, 61-66.	1.9	60
80	Decoupling of Bilateral Paraspinal Excitation in Subjects with Low Back Pain. Spine, 1992, 17, 1219-1223.	1.0	57
81	In vivo tracking of the human patella. Journal of Biomechanics, 1992, 25, 637-643.	0.9	114
82	Minimizing cross talk in surface electromyograms. Journal of Biomechanics, 1992, 25, 751.	0.9	0
83	Cross talk in surface electromyograms of human hamstring muscles. Journal of Orthopaedic Research, 1992, 10, 701-709.	1.2	77
84	Fatigue rates of vastus medialis oblique and vastus lateralis during static and dynamic knee extension. Journal of Orthopaedic Research, 1991, 9, 391-397.	1.2	56