Jedrzej Hoffmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7414052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Value of prognostic nutritional index for survival prediction in trans-catheter aortic valve replacement compared to other common nutritional indexes. Acta Cardiologica, 2021, 76, 615-622.	0.3	5
2	Single-cell RNA-sequencing reveals profound changes in circulating immune cells in patients with heart failure. Cardiovascular Research, 2021, 117, 484-494.	1.8	45
3	Clonal Hematopoiesis–Driver DNMT3A Mutations Alter Immune Cells in Heart Failure. Circulation Research, 2021, 128, 216-228.	2.0	129
4	Clonal haematopoiesis in chronic ischaemic heart failure: prognostic role of clone size for <i>DNMT3A</i> - and <i>TET2</i> -driver gene mutations. European Heart Journal, 2021, 42, 257-265.	1.0	83
5	Telomerase as a Therapeutic Target in Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1047-1061.	1.1	41
6	Single Nuclei Sequencing Reveals Novel Insights Into the Regulation of Cellular Signatures in Children With Dilated Cardiomyopathy. Circulation, 2021, 143, 1704-1719.	1.6	36
7	Post-myocardial infarction heart failure dysregulates the bone vascular niche. Nature Communications, 2021, 12, 3964.	5.8	23
8	Clonal haematopoiesis in patients with degenerative aortic valve stenosis undergoing transcatheter aortic valve implantation. European Heart Journal, 2020, 41, 933-939.	1.0	150
9	High-Content Immunophenotyping and Hierarchical Clustering Reveal Sources of Heterogeneity and New Surface Markers of Human Blood Monocyte Subsets. Thrombosis and Haemostasis, 2020, 120, 141-155.	1.8	9
10	Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiology, 2020, 5, 1265.	3.0	1,659
11	Hematopoietic alterations in chronic heart failure patients by somatic mutations leading to clonal hematopoiesis. Haematologica, 2020, 105, e328-e332.	1.7	19
12	Inflammatory signatures are associated with increased mortality after transfemoral transcatheter aortic valve implantation. ESC Heart Failure, 2020, 7, 2597-2610.	1.4	19
13	Circulating Th17 and Th22 Cells Are Associated With CMR Imaging Biosignatures of Diffuse Myocardial Interstitial Remodeling in Chronic Coronary Artery Disease. Circulation Research, 2020, 127, 699-701.	2.0	5
14	CMV-independent increase in CD27â^'CD28+ CD8+ EMRA T cells is inversely related to mortality in octogenarians. Npj Aging and Mechanisms of Disease, 2020, 6, 3.	4.5	27
15	Association of Mutations Contributing to Clonal Hematopoiesis With Prognosis in Chronic Ischemic Heart Failure. JAMA Cardiology, 2019, 4, 25.	3.0	313
16	Endogenous developmental endothelial locus-1 limits ischaemia- related angiogenesis by blocking inflammation. Thrombosis and Haemostasis, 2017, 117, 1150-1163.	1.8	27
17	Senescent cytotoxic T cells in acute myocardial infarction: innocent bystanders or the horsemen of apocalypse?. Cellular and Molecular Immunology, 2015, 12, 510-512.	4.8	9
18	Release Kinetics of Inflammatory Biomarkers in a Clinical Model of Acute Myocardial Infarction. Circulation Research, 2015, 116, 867-875.	2.0	51

Jedrzej Hoffmann

#	Article	IF	CITATIONS
19	Response to Letter Regarding Article, "Revisiting the Role of sCD40L as an Inflammatory Biomarker in a Clinical Model of Acute Myocardial Infarction― Circulation Research, 2015, 116, e27.	2.0	Ο
20	Influence of Renal Sympathetic Denervation on Cardiac Extracellular Matrix Turnover and Cardiac Fibrosis. American Journal of Hypertension, 2015, 28, 1285-1292.	1.0	15
21	Reference Values and Release Kinetics of B-Type Natriuretic Peptide Signal Peptide in Patients with Acute Myocardial Infarction. Clinical Chemistry, 2015, 61, 1532-1539.	1.5	7
22	Myocardial Ischemia and Reperfusion Leads to Transient CD8 Immune Deficiency and Accelerated Immunosenescence in CMV-Seropositive Patients. Circulation Research, 2015, 116, 87-98.	2.0	33
23	High-sensitivity cardiac troponin T and copeptin assays to improve diagnostic accuracy of exercise stress test in patients with suspected coronary artery disease. European Journal of Preventive Cardiology, 2015, 22, 684-692.	0.8	16
24	Beneficial effects of renal sympathetic denervation on cardiovascular inflammation and remodeling in essential hypertension. Clinical Research in Cardiology, 2015, 104, 175-184.	1.5	37
25	Release kinetics of early ischaemic biomarkers in a clinical model of acute myocardial infarction. Heart, 2014, 100, 652-657.	1.2	29
26	Release kinetics of N-terminal pro-B-type natriuretic peptide in a clinical model of acute myocardial infarction. Clinica Chimica Acta, 2014, 429, 34-37.	0.5	12
27	Atorvastatin induces T cell proliferation by a telomerase reverse transcriptase (TERT) mediated mechanism. Atherosclerosis, 2014, 236, 312-320.	0.4	42
28	Sham Surgery and Inter-Individual Heterogeneity Are Major Determinants of Monocyte Subset Kinetics in a Mouse Model of Myocardial Infarction. PLoS ONE, 2014, 9, e98456.	1.1	15
29	Release Kinetics of Copeptin in Patients Undergoing Transcoronary Ablation of Septal Hypertrophy. Clinical Chemistry, 2013, 59, 566-569.	1.5	40
30	Molecular basis of disturbed extracellular matrix homeostasis in stress cardiomyopathy. International Journal of Cardiology, 2013, 168, 1685-1688.	0.8	17
31	Regression of cardiac hypertrophy by granulocyte colony-stimulating factor-stimulated interleukin-1β synthesis. European Heart Journal, 2012, 33, 595-605.	1.0	38
32	Bone marrow-derived cells contribute to cell turnover in aging murine hearts. International Journal of Molecular Medicine, 2012, 30, 283-287.	1.8	15
33	Release Kinetics of Cardiac Biomarkers in Patients Undergoing Transcoronary Ablation of Septal Hypertrophy. Clinical Chemistry, 2012, 58, 1049-1054.	1.5	38
34	High-Throughput 13-Parameter Immunophenotyping Identifies Shifts in the Circulating T-Cell Compartment Following Reperfusion in Patients with Acute Myocardial Infarction. PLoS ONE, 2012, 7, e47155.	1.1	28
35	Telomere length in cardiovascular disease: new challenges in measuring this marker of cardiovascular aging. Future Cardiology, 2011, 7, 789-803.	0.5	33
36	Accelerated Telomere Shortening in Leukocyte Subpopulations of Patients With Coronary Heart Disease. Circulation, 2009, 120, 1364-1372.	1.6	128

#	Article	IF	CITATIONS
37	Telomere length-heterogeneity among myeloid cells is a predictor for chronological ageing. Experimental Gerontology, 2009, 44, 363-366.	1.2	24
38	Telomere Gap Between Granulocytes and Lymphocytes Is a Determinant for Hematopoetic Progenitor Cell Impairment in Patients With Previous Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 968-974.	1.1	63