List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7413978/publications.pdf Version: 2024-02-01

Ερις Μ Υελτμαν

#	Article	IF	CITATIONS
1	Optimization for Interval Type-2 Polynomial Fuzzy Systems: A Deep Reinforcement Learning Approach. IEEE Transactions on Artificial Intelligence, 2023, 4, 1269-1280.	3.4	3
2	Power Supply Based on Inductive Harvesting From Structural Currents. IEEE Internet of Things Journal, 2022, 9, 7166-7177.	5.5	9
3	Towards a Functional Atraumatic Selfâ€ S haping Cochlear Implant. Macromolecular Materials and Engineering, 2022, 307, 2100620.	1.7	3
4	Task-Based LSTM Kinematic Modeling for a Tendon-Driven Flexible Surgical Robot. IEEE Transactions on Medical Robotics and Bionics, 2022, 4, 339-342.	2.1	11
5	GlobDesOpt: A Global Optimization Framework for Optimal Robot Manipulator Design. IEEE Access, 2022, 10, 5012-5023.	2.6	4
6	Anthropomorphic Dual-Arm Coordinated Control for a Single-Port Surgical Robot Based on Dual-Step Optimization. IEEE Transactions on Medical Robotics and Bionics, 2022, 4, 72-84.	2.1	16
7	Multiplexed immunosensors for point-of-care diagnostic applications. Biosensors and Bioelectronics, 2022, 203, 114050.	5.3	69
8	Deep Reinforcement Learning-Based Control Framework for Multilateral Telesurgery. IEEE Transactions on Medical Robotics and Bionics, 2022, 4, 352-355.	2.1	14
9	Optimization of Surgical Robotic Instrument Mounting in a Macro–Micro Manipulator Setup for Improving Task Execution. IEEE Transactions on Robotics, 2022, 38, 2858-2874.	7.3	9
10	Augmented Neural Network for Full Robot Kinematic Modelling in SE(3). IEEE Robotics and Automation Letters, 2022, 7, 7140-7147.	3.3	8
11	Model Learning With Backlash Compensation for a Tendon-Driven Surgical Robot. IEEE Robotics and Automation Letters, 2022, 7, 7958-7965.	3.3	8
12	3D Printability Assessment of Poly(octamethylene maleate (anhydride) citrate) and Poly(ethylene) Tj ETQq0 0 0 5457-5470.	rgBT /Ove 2.0	rlock 10 Tf 50 7
13	Hybrid energy harvesting technology: From materials, structural design, system integration to applications. Renewable and Sustainable Energy Reviews, 2021, 137, 110473.	8.2	185
14	Rotational energy harvesting for self-powered sensing. Joule, 2021, 5, 1074-1118.	11.7	172
15	Plasmonic optical fiber for bacteria manipulation—characterization and visualization of accumulation behavior under plasmo-thermal trapping. Biomedical Optics Express, 2021, 12, 3917.	1.5	2
16	Nonlinear Wind Energy Harvesting Based on Mechanical Synchronous Switch Harvesting on Inductor. , 2021, , .		3
17	A Bistable Energy Harvester for Self-Powered Sensing in Rail Transport Condition Monitoring. , 2021, ,		1
18	Interrogation and Charging of Embedded Sensors by Autonomous Vehicles. , 2021, , .		1

#	Article	IF	CITATIONS
19	Kinematic Parameter Optimization of a Miniaturized Surgical Instrument Based on Dexterous Workspace Determination. , 2021, , .		7
20	Optimal Dynamic Recharge Scheduling for Two-Stage Wireless Power Transfer. IEEE Transactions on Industrial Informatics, 2021, 17, 5719-5729.	7.2	9
21	Micromechanics for energy generation. Journal of Micromechanics and Microengineering, 2021, 31, 114003.	1.5	6
22	A comparative review of artificial muscles for microsystem applications. Microsystems and Nanoengineering, 2021, 7, 95.	3.4	21
23	Dual-arm Coordinated Manipulation for Object Twisting with Human Intelligence. , 2021, , .		8
24	A Novel Training and Collaboration Integrated Framework for Human–Agent Teleoperation. Sensors, 2021, 21, 8341.	2.1	10
25	Coupling of piezo- and pyro-electric effects in miniature thermal energy harvesters. Applied Energy, 2020, 262, 114496.	5.1	19
26	A Flexible, Low-Power Platform for UAV-Based Data Collection From Remote Sensors. IEEE Access, 2020, 8, 164775-164785.	2.6	16
27	Clinical detection of neurodegenerative blood biomarkers using graphene immunosensor. Carbon, 2020, 168, 144-162.	5.4	30
28	Piezoelectric wind velocity sensor based on the variation of galloping frequency with drag force. Applied Physics Letters, 2020, 116, .	1.5	26
29	Micro Motion Amplification–A Review. IEEE Access, 2020, 8, 64037-64055.	2.6	27
30	Rotational energy harvesting using bi-stability and frequency up-conversion for low-power sensing applications: Theoretical modelling and experimental validation. Mechanical Systems and Signal Processing, 2019, 125, 229-244.	4.4	181
31	Efficient and Reliable Aerial Communication With Wireless Sensors. IEEE Internet of Things Journal, 2019, 6, 9000-9011.	5.5	11
32	Radio Diversity for Heterogeneous Communication with Wireless Sensors. , 2019, , .		3
33	Exploring coupled electromechanical nonlinearities for broadband energy harvesting from low-frequency rotational sources. Smart Materials and Structures, 2019, 28, 075001.	1.8	16
34	Spatially Precise Transfer of Patterned Monolayer WS ₂ and MoS ₂ with Features Larger than 10 ⁴ î¼m ² Directly from Multilayer Sources. ACS Applied Electronic Materials, 2019, 1, 407-416.	2.0	23
35	Inductive Power Delivery with Acoustic Distribution to Wireless Sensors. , 2019, , .		4
36	Hybridized thermal energy harvesting mechanism. Journal of Physics: Conference Series, 2019, 1407, 012038.	0.3	0

#	Article	IF	CITATIONS
37	Energy Harvesting Piezoelectric Wind Speed Sensor. Journal of Physics: Conference Series, 2019, 1407, 012044.	0.3	1
38	Broadband Vibration Energy Harvesting from Underground Trains for Self-Powered Condition Monitoring. , 2019, , .		6
39	Effective piezoelectric energy harvesting using beam plucking and a synchronized switch harvesting circuit. Smart Materials and Structures, 2018, 27, 084003.	1.8	18
40	Comparison and Scaling Effects of Rotational Microâ€Generators using Electromagnetic and Piezoelectric Transduction. Energy Technology, 2018, 6, 2220-2231.	1.8	16
41	A novel protocol for data links between wireless sensors and UAV based sink nodes. , 2018, , .		6
42	Ellipsometry of Sol-Gel Films. , 2018, , 1595-1605.		1
43	Acoustic power delivery to pipeline monitoring wireless sensors. Ultrasonics, 2017, 77, 54-60.	2.1	32
44	A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion. Energy, 2017, 125, 152-161.	4.5	160
45	Broadband rotational energy harvesting using bistable mechanism and frequency up-conversion. , 2017, , .		7
46	Opportunities for Sensing Systems in Mining. IEEE Transactions on Industrial Informatics, 2017, 13, 278-286.	7.2	16
47	Three-Dimensional Printed Insulation For Dynamic Thermoelectric Harvesters With Encapsulated Phase Change Materials. , 2017, 1, 1-4.		13
48	Energy-autonomous sensing systems using drones. , 2017, , .		26
49	Introduction to the special topic on nanomanufacturing. Microsystems and Nanoengineering, 2017, 3, 17079.	3.4	3
50	Thermal Energy Harvesting Using Pyroelectric and Piezoelectric Effect. Journal of Physics: Conference Series, 2016, 773, 012073.	0.3	5
51	Modular Software-Defined Radio Testbed for Rapid Prototyping of Localization Algorithms. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 1577-1584.	2.4	14
52	Wireless power transfer system for a human motion energy harvester. Sensors and Actuators A: Physical, 2016, 244, 77-85.	2.0	25
53	RF MEMS Zipping Varactor With High Quality Factor and Very Large Tuning Range. IEEE Electron Device Letters, 2016, 37, 1340-1343.	2.2	9
54	Footstep energy harvesting using heel strike-induced airflow for human activity sensing. , 2016, , .		15

#	Article	IF	CITATIONS
55	A dynamic regulating mechanism for increased airflow speed range in micro piezoelectric turbines. , 2016, , .		1
56	Ellipsometry of Sol–Gel Films. , 2016, , 1-11.		1
57	A miniaturized piezoelectric turbine with self-regulation for increased air speed range. Applied Physics Letters, 2015, 107, .	1.5	42
58	A Motion-Powered Piezoelectric Pulse Generator for Wireless Sensing via FM Transmission. IEEE Internet of Things Journal, 2015, 2, 5-13.	5.5	13
59	Introduction to Micro Energy Harvesting. Advanced Micro & Nanosystems, 2015, , 1-5.	0.2	2
60	Protection of Electronics from Environmental Temperature Spikes by Phase Change Materials. Journal of Electronic Materials, 2015, 44, 4589-4594.	1.0	9
61	A non-harmonic motion-powered piezoelectric FM wireless sensing system. , 2015, , .		2
62	Characterization and Modeling of Nonlinearities in In-Plane Gap Closing Electrostatic Energy Harvester. Journal of Microelectromechanical Systems, 2015, 24, 2071-2082.	1.7	14
63	Energy Harvesting and Power Delivery. , 2014, , 237-272.		5
64	A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications. Sensors and Actuators A: Physical, 2014, 206, 178-185.	2.0	279
65	Design and Fabrication of Heat Storage Thermoelectric Harvesting Devices. IEEE Transactions on Industrial Electronics, 2014, 61, 302-309.	5.2	87
66	A dual polarity, cold-starting interface circuit for heat storage energy harvesters. Sensors and Actuators A: Physical, 2014, 211, 38-44.	2.0	16
67	Experimental Validation of a Piezoelectric Frequency Up-Converting Rotational Harvester. , 2014, , .		3
68	A Piezoelectric Pulse Generator and FM Transmission Circuit for Self-Powered BSN Nodes. , 2014, , .		1
69	Micromechanical Actuators Driven by Ultrasonic Power Transfer. Journal of Microelectromechanical Systems, 2014, 23, 750-759.	1.7	9
70	Battery-less microdevices for Body Sensor/Actuator networks. , 2013, , .		6
71	Urban Sensor Data Streams: London 2013. IEEE Internet Computing, 2013, 17, 12-20.	3.2	34
72	Stress in electroplated gold on silicon substrates and its dependence on cathode agitation. Microelectronic Engineering, 2013, 112, 21-26.	1.1	7

#	Article	IF	CITATIONS
73	Experimental passive self-tuning behavior of a beam resonator with sliding proof mass. Journal of Sound and Vibration, 2013, 332, 7142-7152.	2.1	60
74	Magnetic tuning of a kinetic energy harvester using variable reluctance. Sensors and Actuators A: Physical, 2013, 189, 266-275.	2.0	30
75	Harvesting energy from aircraft power lines. , 2013, , .		1
76	Wideband excitation of an electrostatic vibration energy harvester with power-extracting end-stops. Smart Materials and Structures, 2013, 22, 075020.	1.8	22
77	Performance of phase change materials for heat storage thermoelectric harvesting. Applied Physics Letters, 2013, 103, .	1.5	19
78	A piezoelectric pulse generator for low frequency non-harmonic vibration. Journal of Physics: Conference Series, 2013, 476, 012059.	0.3	2
79	A scalable piezoelectric impulse-excited energy harvester for human body excitation. Smart Materials and Structures, 2012, 21, 115018.	1.8	88
80	Materials and techniques for energy harvesting. , 2012, , 541-572.		29
81	Piezoelectric Rotational Energy Harvester for Body Sensors Using an Oscillating Mass. , 2012, , .		4
82	Microscale electrostatic energy harvester using internal impacts. Journal of Intelligent Material Systems and Structures, 2012, 23, 1409-1421.	1.4	72
83	Effects of nonconstant coupling through nonlinear magnetics in electromagnetic vibration energy harvesters. Journal of Intelligent Material Systems and Structures, 2012, 23, 1533-1541.	1.4	9
84	Power-Extraction Circuits for Piezoelectric Energy Harvesters in Miniature and Low-Power Applications. IEEE Transactions on Power Electronics, 2012, 27, 4514-4529.	5.4	198
85	Stepwise Microactuators Powered by Ultrasonic Transfer. Procedia Engineering, 2011, 25, 685-688.	1.2	15
86	A MEMS Self-Powered Sensor and RF Transmission Platform for WSN Nodes. IEEE Sensors Journal, 2011, 11, 3437-3445.	2.4	37
87	Transfer of Functional Ceramic Thin Films Using a Thermal Release Process. Advanced Materials, 2011, 23, 1252-1256.	11.1	2
88	Laser transfer of sol–gel ferroelectric thin films using an ITO release layer. Microelectronic Engineering, 2011, 88, 145-149.	1.1	9
89	Self-assembly of three-dimensional Au inductors on silicon. IET Microwaves, Antennas and Propagation, 2010, 4, 1698.	0.7	2
90	Flexible substrate electrostatic energy harvester. Electronics Letters, 2010, 46, 166.	0.5	29

#	Article	IF	CITATIONS
91	MEMS energy harvester for wireless biosensors. , 2010, , .		8
92	Stable zipping RF MEMS varactors. Journal of Micromechanics and Microengineering, 2010, 20, 035030.	1.5	12
93	Solder transfer of lead zirconate titanate (PZT) thin films. , 2010, , .		0
94	Ultrasonic vs. Inductive Power Delivery for Miniature Biomedical Implants. , 2010, , .		131
95	Non-mechanical sub-pixel image shifter for acquiring super-resolution digital images. Optics Express, 2009, 17, 22992.	1.7	1
96	MEMS Energy Harvesting Powered Wireless Biometric Sensor. , 2009, , .		21
97	Rolling Rod Electrostatic Microgenerator. IEEE Transactions on Industrial Electronics, 2009, 56, 1101-1108.	5.2	52
98	Energy harvesting: small scale energy production from ambient sources. , 2009, , .		4
99	Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices. Proceedings of the IEEE, 2008, 96, 1457-1486.	16.4	1,522
100	Die-level integration of metal MEMS with CMOS. , 2008, , .		2
101	Non-resonant electrostatic energy harvesting from a rolling mass. , 2008, , .		1
102	High-Q continuously tunable zipping varactors with large tuning range. , 2008, , .		0
103	Electrostatic Microgenerators. Measurement and Control, 2008, 41, 114-119.	0.9	57
104	A continuously rotating energy harvester with maximum power point tracking. Journal of Micromechanics and Microengineering, 2008, 18, 104008.	1.5	58
105	Approaches to Self-Powered Biochemical Sensors for In- Vivo Applications. , 2008, , .		1
106	Low Loss Tunable Optical Filter using Silicon Photonic Band Gap Mirrors. , 2007, , .		2
107	A 1-D Photonic Band Gap Tunable Optical Filter in (110) Silicon. Journal of Microelectromechanical Systems, 2007, 16, 521-527.	1.7	60
108	Applications of MEMS in power sources and circuits. Journal of Micromechanics and Microengineering, 2007, 17, S184-S188.	1.5	13

ERIC M YEATMAN

#	Article	IF	CITATIONS
109	Multilayered Waveguides for Increasing the Gain Bandwidth of Integrated Amplifiers. Journal of Lightwave Technology, 2007, 25, 1613-1620.	2.7	1
110	Micro-Engineered Devices for Motion Energy Harvesting. , 2007, , .		13
111	Energy scavenging for wireless sensor nodes. , 2007, , .		16
112	Performance limits of the three MEMS inertial energy generator transduction types. Journal of Micromechanics and Microengineering, 2007, 17, S211-S216.	1.5	102
113	Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers. Microsystem Technologies, 2007, 13, 1629-1635.	1.2	123
114	Converter circuit design, semiconductor device selection and analysis of parasitics for micropower electrostatic Generators. IEEE Transactions on Power Electronics, 2006, 21, 27-37.	5.4	54
115	Optimization of inertial micropower Generators for human walking motion. IEEE Sensors Journal, 2006, 6, 28-38.	2.4	172
116	Low-loss one-dimensional photonic bandgap filter in (110) silicon. Optics Letters, 2006, 31, 395.	1.7	28
117	Performance evaluation of optical DQPSK using saddle point approximation. Journal of Lightwave Technology, 2006, 24, 1176-1185.	2.7	7
118	Modeling signal and ASE evolution in erbium-doped amplifiers with the method of lines. Journal of Lightwave Technology, 2006, 24, 1589-1600.	2.7	4
119	Mems inertial power generators for biomedical applications. Microsystem Technologies, 2006, 12, 1079-1083.	1.2	171
120	Multilevel amplitude shift keying in dispersion uncompensated optical systems. IEE Proceedings: Optoelectronics, 2006, 153, 101-108.	0.8	28
121	Energy Scavenging. , 2006, , 183-217.		4
122	Design and performance analysis of thermally actuated MEMS circuit breakers. Journal of Micromechanics and Microengineering, 2005, 15, S109-S115.	1.5	6
123	Use of Scanned Detection in Optical Position Encoders. IEEE Transactions on Instrumentation and Measurement, 2004, 53, 37-44.	2.4	12
124	MEMS electrostatic micropower generator for low frequency operation. Sensors and Actuators A: Physical, 2004, 115, 523-529.	2.0	539
125	Microengineered Electrically Resettable Circuit Breaker. Journal of Microelectromechanical Systems, 2004, 13, 887-894.	1.7	12
126	Architectures for Vibration-Driven Micropower Generators. Journal of Microelectromechanical Systems, 2004, 13, 429-440.	1.7	594

#	Article	IF	CITATIONS
127	Molecular homogeneity in erbium-doped sol-gel waveguide amplifiers. IEEE Journal of Quantum Electronics, 2004, 40, 805-814.	1.0	10
128	Surface tension-powered self-assembly of microstructures - The state-of-the-art. Journal of Microelectromechanical Systems, 2003, 12, 387-417.	1.7	289
129	Fiber-device-fiber gain from a sol-gel erbium-doped waveguide amplifier. IEEE Photonics Technology Letters, 2002, 14, 959-961.	1.3	58
130	Fabrication, RF characteristics and mechanical stability of self-assembled 3D microwave inductors. Sensors and Actuators A: Physical, 2002, 97-98, 215-220.	2.0	49
131	Strip-Loaded Sol-Gel Waveguides: Design and Fabrication. Fiber and Integrated Optics, 2001, 20, 29-43.	1.7	20
132	High Q Achieved in Microwave Inductors Fabricated by Parallel Self-Assembly. , 2001, , 1070-1073.		13
133	Sol-Gel Fabrication of Rare-Earth Doped Photonic Components. Journal of Sol-Gel Science and Technology, 2000, 19, 231-236.	1.1	50
134	High Q microwave inductors on silicon by surface tension self-assembly. Electronics Letters, 2000, 36, 1707.	0.5	33
135	Optical gain in Er-doped SiO2–TiO2 waveguides fabricated by the sol–gel technique. Optics Communications, 1999, 164, 19-25.	1.0	63
136	Sol–gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 μm. Optical Materials, 1999, 12, 1-18.	1.7	263
137	Dual numerical aperture confocal operation of moving fibre bar code reader. Electronics Letters, 1999, 35, 1656.	0.5	8
138	<title>Strip-loaded sol-gel waveguides for optical amplifiers</title> . , 1999, , .		1
139	Multilayer SiO2-B2O3-Na2 O Films on Si for Optical Applications. Journal of Sol-Gel Science and Technology, 1998, 13, 783-787.	1.1	9
140	Control of Dopant Adsorption from Aqueous Solution into Nanoporous Sol-Gel Films. Journal of Sol-Gel Science and Technology, 1998, 13, 579-584.	1.1	3
141	Strip-Loaded High-Confinement Waveguides for Photonic Applications. Journal of Sol-Gel Science and Technology, 1998, 13, 517-521.	1.1	25
142	Optical Viscometry of Spinning Sol Coatings. Journal of Sol-Gel Science and Technology, 1998, 13, 707-712.	1.1	7
143	Spinning deposition of silica and silica-titania optical coatings: A round robin test. Journal of Materials Research, 1998, 13, 731-738.	1.2	10
144	Growth and characterization of semiconductor nanoparticles in porous sol-gel films. Journal of Materials Research, 1997, 12, 3115-3126.	1.2	18

#	Article	IF	CITATIONS
145	Sol-gel fabrication for optical communication components: prospects and progress. , 1997, 10290, 119.		2
146	Selective-area doping of porous solgel films for integrated optics. Optics Letters, 1997, 22, 1864.	1.7	6
147	Doped Sol-Gel Films for Silica-on-Silicon Photonic Components. Journal of Sol-Gel Science and Technology, 1997, 8, 1007-1011.	1.1	Ο
148	Doped sol-gel films for silica-on-silicon photonic components. Journal of Sol-Gel Science and Technology, 1997, 8, 1007-1011.	1.1	7
149	<title>Real-time interferometric analysis of spinning liquid films</title> . , 1996, 2861, 164.		2
150	Fabrication and characterisation of a CdS-doped silica-on-silicon planar waveguide. IEE Proceedings: Optoelectronics, 1996, 143, 298-302.	0.8	10
151	Resolution and sensitivity in surface plasmon microscopy and sensing. Biosensors and Bioelectronics, 1996, 11, 635-649.	5.3	148
152	Piezoelectric films in silicon-based microactuation structures. , 1995, , .		2
153	Demonstration of three-dimensional microstructure self-assembly. Journal of Microelectromechanical Systems, 1995, 4, 170-176.	1.7	90
154	Effects of H2O on structure of acid-catalysed SiO2 sol-gel films. Journal of Non-Crystalline Solids, 1995, 183, 260-267.	1.5	69
155	Optical monitoring of the sol-to-gel transition in spinning silica films. , 1994, , .		9
156	Characterisation of microporous sol-gel films for optical device applications. Journal of Sol-Gel Science and Technology, 1994, 2, 711-715.	1.1	39
157	Porous films for nonlinear silica-on-silicon integrated optics. , 1994, 2288, 77.		2
158	Self-assembly of three-dimensional microstructures using rotation by surface tension forces. Electronics Letters, 1993, 29, 662.	0.5	83
159	Real-time optical monitoring of spin coating. Journal De Physique III, 1993, 3, 2059-2063.	0.3	21
160	Surface-plasmon spatial light modulators based on liquid crystal. Applied Optics, 1992, 31, 3880.	2.1	42
161	Performance characteristics of surface plasmon liquid crystal light valve. Electronics Letters, 1991, 27, 1471.	0.5	7
162	<title>Recent advances in surface plasmon spatial light modulators</title> ., 1991, 1505, 50.		0

#	Article	IF	CITATIONS
163	Optical layout for single-transverse-mode operation of 2-D arrays of vertical cavity surface-emitting lasers. Electronics Letters, 1991, 27, 349.	0.5	1
164	Optimal transverse mode control of waveguide array lasers by discrete transform techniques. Electronics Letters, 1991, 27, 1461.	0.5	2
165	Surface Plasmon Spatial Light Modulators. , 1990, , .		1
166	<title>Optically addressed surface plasmon spatial light modulators</title> . , 1990, , .		1
167	Spatial light modulation using surface plasmon resonance. Applied Physics Letters, 1989, 55, 613-615.	1.5	25
168	Computerized Surface Plasmon Microscopy. Proceedings of SPIE, 1989, , .	0.8	0
169	Surface Plasmon Scanning Microscopy. Proceedings of SPIE, 1988, 0897, 100.	0.8	14
170	An integrated optical technology based on sol-gel glasses on silicon: the NODES project. , 0, , .		1
171	Microwave characteristics of meander inductors fabricated by 3D self-assembly. , 0, , .		7
172	MEMS high Q microwave inductors using solder surface tension self-assembly. , 0, , .		27
173	Mechanical noise induced by acceleration or acoustic disturbances in MEMS microwave inductors. , 0, , ,		0
174	Investigation of the spectral advantages of sol-gel layered erbium doped waveguide amplifiers. , 0, , .		0
175	Performance of 4-ary ASK for optical communication systems in dispersive, nonlinear environments. , 0, , .		1
176	Power processing issues for micro-power electrostatic generators. , 0, , .		7
177	Free-space MEMS tunable optical filter on [110] silicon. , 0, , .		10
178	Laterally Actuated, Low Voltage, 3-Port RF MEMS Switch. , 0, , .		16
179	Rotating and Gyroscopic MEMS Energy Scavenging. , 0, , .		8