Angeles Almeida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7413327/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C–Cdh1. Nature Cell Biology, 2009, 11, 747-752.	4.6	671
2	Nitric Oxideâ€Mediated Mitochondrial Damage in the Brain: Mechanisms and Implications for Neurodegenerative Diseases. Journal of Neurochemistry, 1997, 68, 2227-2240.	2.1	458
3	Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nature Cell Biology, 2004, 6, 45-51.	4.6	416
4	Different responses of astrocytes and neurons to nitric oxide: The role of glycolytically generated ATP in astrocyte protection. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 15294-15299.	3.3	363
5	Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13063-13068.	3.3	300
6	Glycolysis: a bioenergetic or a survival pathway?. Trends in Biochemical Sciences, 2010, 35, 145-149.	3.7	297
7	Roles of nitric oxide in brain hypoxia-ischemia. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1411, 415-436.	0.5	269
8	Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture. Journal of Neurochemistry, 2002, 81, 207-217.	2.1	211
9	Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochemical Journal, 2012, 443, 3-11.	1.7	210
10	Mitochondrial respiratory chain and free radical generation in stroke. Free Radical Biology and Medicine, 2005, 39, 1291-1304.	1.3	207
11	Neuroprotective Role of Antidiabetic Drug Metformin Against Apoptotic Cell Death in Primary Cortical Neurons. Journal of Molecular Neuroscience, 2008, 34, 77-87.	1.1	200
12	Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature, 2020, 583, 603-608.	13.7	169
13	Interrelationships between astrocyte function, oxidative stress and antioxidant status within the central nervous system. Progress in Neurobiology, 1997, 52, 261-281.	2.8	156
14	Peroxisome Proliferator-activated Receptor γ Thiazolidinedione Agonists Increase Glucose Metabolism in Astrocytes. Journal of Biological Chemistry, 2003, 278, 5828-5836.	1.6	154
15	E3 ubiquitin ligase APC/C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 738-741.	3.3	150
16	A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons. Journal of Neurochemistry, 2001, 77, 676-690.	2.1	147
17	Peroxynitrite Protects Neurons against Nitric Oxide-mediated Apoptosis. Journal of Biological Chemistry, 2003, 278, 864-874.	1.6	147
18	Glutamate neurotoxicity is associated with nitric oxide-mediated mitochondrial dysfunction and glutathione depletion. Brain Research, 1998, 790, 209-216.	1.1	137

#	Article	IF	CITATIONS
19	Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5–Nrf2 pathway. Cell Death and Differentiation, 2015, 22, 1877-1889.	5.0	136
20	Cdh1/Hct1-APC Is Essential for the Survival of Postmitotic Neurons. Journal of Neuroscience, 2005, 25, 8115-8121.	1.7	135
21	γ-Glutamylcysteine detoxifies reactive oxygen species by acting as glutathione peroxidase-1 cofactor. Nature Communications, 2012, 3, 718.	5.8	132
22	Effect of Reperfusion Following Cerebral Ischaemia on the Activity of the Mitochondrial Respiratory Chain in the Gerbil Brain. Journal of Neurochemistry, 1995, 65, 1698-1703.	2.1	125
23	Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nature Metabolism, 2019, 1, 201-211.	5.1	119
24	Cdk5 phosphorylates Cdh1 and modulates cyclin B1 stability in excitotoxicity. EMBO Journal, 2008, 27, 2736-2745.	3.5	115
25	Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death and Differentiation, 2012, 19, 1582-1589.	5.0	107
26	Changes of Respiratory Chain Activity in Mitochondrial and Synaptosomal Fractions Isolated from the Gerbil Brain After Graded Ischaemia. Journal of Neurochemistry, 1995, 64, 2222-2229.	2.1	98
27	Mitochondria and reactive oxygen and nitrogen species in neurological disorders and stroke: Therapeutic implicationsâ^†. Advanced Drug Delivery Reviews, 2009, 61, 1299-1315.	6.6	93
28	PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nature Communications, 2014, 5, 4514.	5.8	93
29	Regulation of glycolysis and pentose–phosphate pathway by nitric oxide: Impact on neuronal survival. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 789-793.	0.5	90
30	APC/C-Cdh1 coordinates neurogenesis and cortical size during development. Nature Communications, 2013, 4, 2879.	5.8	82
31	Induction of Glucose-6-Phosphate Dehydrogenase by Lipopolysaccharide Contributes to Preventing Nitric Oxide-Mediated Glutathione Depletion in Cultured Rat Astrocytes. Journal of Neurochemistry, 2001, 72, 1750-1758.	2.1	79
32	Inhibition of PTEN by peroxynitrite activates the phosphoinositide-3-kinase/Akt neuroprotective signaling pathway. Journal of Neurochemistry, 2007, 102, 194-205.	2.1	76
33	Inhibition of mitochondrial respiration by nitric oxide rapidly stimulates cytoprotective GLUT3-mediated glucose uptake through 5′-AMP-activated protein kinase. Biochemical Journal, 2004, 384, 629-636.	1.7	73
34	Knockdown of Glutamate-Cysteine Ligase by Small Hairpin RNA Reveals That Both Catalytic and Modulatory Subunits Are Essential for the Survival of Primary Neurons. Journal of Biological Chemistry, 2005, 280, 38992-39001.	1.6	70
35	D-Glucose Prevents Glutathione Oxidation and Mitochondrial Damage After Glutamate Receptor Stimulation in Rat Cortical Primary Neurons. Journal of Neurochemistry, 2002, 75, 1618-1624.	2.1	69
36	Brain energy metabolism in glutamate-receptor activation and excitotoxicity: Role for APC/C-Cdh1 in the balance glycolysis/pentose phosphate pathway. Neurochemistry International, 2013, 62, 750-756.	1.9	68

#	Article	lF	CITATIONS
37	A rapid method for the isolation of metabolically active mitochondria from rat neurons and astrocytes in primary culture. Brain Research Protocols, 1998, 2, 209-214.	1.7	67
38	Regulatory T cells modulate inflammation and reduce infarct volume in experimental brain ischaemia. Journal of Cellular and Molecular Medicine, 2014, 18, 1571-1579.	1.6	64
39	Bilirubin selectively inhibits cytochrome <i>c</i> oxidase activity and induces apoptosis in immature cortical neurons: assessment of the protective effects of glycoursodeoxycholic acid. Journal of Neurochemistry, 2010, 112, 56-65.	2.1	63
40	The pentoseâ€phosphate pathway in neuronal survival against nitrosative stress. IUBMB Life, 2010, 62, 14-18.	1.5	57
41	The human <i>Tp53 Arg72Pro</i> polymorphism explains different functional prognosis in stroke. Journal of Experimental Medicine, 2011, 208, 429-437.	4.2	57
42	Retinoic acid downregulates Rae1 leading to APCCdh1 activation and neuroblastoma SH-SY5Y differentiation. Oncogene, 2008, 27, 3339-3344.	2.6	56
43	Postnatal Development of the Complexes of the Electron Transport Chain in Isolated Rat Brain Mitochondria. Developmental Neuroscience, 1994, 16, 321-327.	1.0	54
44	Tetrahydrobiopterin deficiency increases neuronal vulnerability to hypoxia. Journal of Neurochemistry, 2002, 82, 1148-1159.	2.1	52
45	Regulation of APC/C-Cdh1 and Its Function in Neuronal Survival. Molecular Neurobiology, 2012, 46, 547-554.	1.9	52
46	Nitric oxide mediates glutamate-induced mitochondrial depolarization in rat cortical neurons. Brain Research, 1999, 816, 580-586.	1.1	47
47	Provoking Neuroprotection by Peroxynitrite. Current Pharmaceutical Design, 2004, 10, 867-877.	0.9	46
48	Glutamate Excitoxicity Is the Key Molecular Mechanism Which Is Influenced by Body Temperature during the Acute Phase of Brain Stroke. PLoS ONE, 2012, 7, e44191.	1.1	44
49	Regulation of Bcl-xL-ATP Synthase Interaction by Mitochondrial Cyclin B1-Cyclin-Dependent Kinase-1 Determines Neuronal Survival. Journal of Neuroscience, 2015, 35, 9287-9301.	1.7	44
50	APC/C ^{Cdh1} -Rock2 pathway controls dendritic integrity and memory. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4513-4518.	3.3	44
51	Targeting PFKFB3 alleviates cerebral ischemia-reperfusion injury in mice. Scientific Reports, 2019, 9, 11670.	1.6	44
52	DJ1 represses glycolysis and cell proliferation by transcriptionally up-regulating <i>pink1</i> . Biochemical Journal, 2015, 467, 303-310.	1.7	43
53	Postnatal Development of the Complexes of the Electron Transport Chain in Synaptic Mitochondria from Rat Brain. Developmental Neuroscience, 1995, 17, 212-218.	1.0	41
54	Inhibition of mitochondrial respiration by nitric oxide: Its role in glucose metabolism and neuroprotection. Journal of Neuroscience Research, 2005, 79, 166-171.	1.3	40

#	Article	IF	CITATIONS
55	Modulation of Astroglial Energy Metabolism by Nitric Oxide. Antioxidants and Redox Signaling, 2006, 8, 955-965.	2.5	40
56	Poly(ADP-ribose) polymerase-1 protects neurons against apoptosis induced by oxidative stress. Cell Death and Differentiation, 2007, 14, 1211-1221.	5.0	40
57	Amyloid-ß promotes neurotoxicity by Cdk5-induced p53 stabilization. Neuropharmacology, 2019, 146, 19-27.	2.0	40
58	Nitric oxide mediates brain mitochondrial damage during perinatal anoxia. Brain Research, 1998, 787, 117-122.	1.1	39
59	Expression of glucose transporter GLUT3 by endotoxin in cultured rat astrocytes: the role of nitric oxide. Journal of Neurochemistry, 2008, 79, 17-24.	2.1	36
60	Neovascularization and functional recovery after intracerebral hemorrhage is conditioned by the Tp53 Arg72Pro single-nucleotide polymorphism. Cell Death and Differentiation, 2017, 24, 144-154.	5.0	35
61	Hippocampal neurons require a large pool of glutathione to sustain dendrite integrity and cognitive function. Redox Biology, 2018, 19, 52-61.	3.9	35
62	Regulation of glucose metabolism by nitrosative stress in neural cells. Molecular Aspects of Medicine, 2004, 25, 61-73.	2.7	34
63	Cdk5-mediated inhibition of APC/C-Cdh1 switches on the cyclin D1-Cdk4-pRb pathway causing aberrant S-phase entry of postmitotic neurons. Scientific Reports, 2015, 5, 18180.	1.6	31
64	Increased mitochondrial respiration maintains the mitochondrial membrane potential and promotes survival of cerebellar neurons in an endogenous model of glutamate receptor activation. Journal of Neurochemistry, 2005, 92, 183-190.	2.1	29
65	Group IIA secretory phospholipase A ₂ (GIIA) mediates apoptotic death during NMDA receptor activation in rat primary cortical neurons. Journal of Neurochemistry, 2010, 112, 1574-1583.	2.1	29
66	Potential mechanisms for nitric oxide-mediated impairment of brain mitochondrial energy metabolism. Biochemical Society Transactions, 1997, 25, 944-949.	1.6	27
67	Isolation and characterization of tightly coupled mitochondria from neurons and astrocytes in primary culture. Brain Research, 1997, 764, 167-172.	1.1	27
68	The MDM2-p53 pathway is involved in preconditioning-induced neuronal tolerance to ischemia. Scientific Reports, 2018, 8, 1610.	1.6	26
69	Depletion of glutathione up-regulates mitochondrial complex I expression in glial cells. Journal of Neurochemistry, 2001, 76, 1593-1596.	2.1	22
70	Peroxynitrite Anion Stimulates Arginine Release from Cultured Rat Astrocytes. Journal of Neurochemistry, 2002, 73, 1446-1452.	2.1	22
71	Peroxynitrite Stimulates I-Arginine Transport Systemy+ in Glial Cells. Journal of Biological Chemistry, 2002, 277, 29753-29759.	1.6	21
72	Human neuroblastoma cells with <i>MYCN</i> amplification are selectively resistant to oxidative stress by transcriptionally upâ€regulating glutamate cysteine ligase. Journal of Neurochemistry, 2010, 113, 819-825.	2.1	20

#	Article	IF	CITATIONS
73	Oxidative Stress in Preterm Rat Brain Is Due to Mitochondrial Dysfunction. Pediatric Research, 2002, 51, 34-39.	1.1	19
74	Linking glycolysis with oxidative stress in neural cells: a regulatory role for nitric oxide. Biochemical Society Transactions, 2007, 35, 1224-1227.	1.6	18
75	Mitochondrial Complex I Activity is Conditioned by Supercomplex I–III2–IV Assembly in Brain Cells: Relevance for Parkinson's Disease. Neurochemical Research, 2017, 42, 1676-1682.	1.6	16
76	Single-Nucleotide Polymorphism <i>309T>G</i> in the <i>MDM2</i> Promoter Determines Functional Outcome After Stroke. Stroke, 2018, 49, 2437-2444.	1.0	16
77	A novel human Cdh1 mutation impairs anaphase promoting complex/cyclosome activity resulting in microcephaly, psychomotor retardation, and epilepsy. Journal of Neurochemistry, 2019, 151, 103-115.	2.1	16
78	Mitochondrial–nuclear p53 trafficking controls neuronal susceptibility in stroke. IUBMB Life, 2021, 73, 582-591.	1.5	16
79	The Neuronal Ischemic Tolerance Is Conditioned by the Tp53 Arg72Pro Polymorphism. Translational Stroke Research, 2019, 10, 204-215.	2.3	15
80	Genetic determinants of neuronal vulnerability to apoptosis. Cellular and Molecular Life Sciences, 2013, 70, 71-88.	2.4	14
81	Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis. Nature Communications, 2022, 13, 536.	5.8	14
82	Postnatal changes in rhodamine-123 stained mitochondrial populations are sensitive to protein synthesis inhibitors but mimicked in vitro byatp. FEBS Letters, 1994, 344, 50-54.	1.3	13
83	Nitric oxide mediates brain mitochondrial maturation immediately after birth. FEBS Letters, 1999, 452, 290-294.	1.3	13
84	Energy metabolism in the developing mammalian brain. Biochemical Society Transactions, 1994, 22, 980-983.	1.6	11
85	Nuclear WRAP53 promotes neuronal survival and functional recovery after stroke. Science Advances, 2020, 6, .	4.7	11
86	Effect of Ethanol Consumption on Adult Rat Liver Mitochondrial Populations Analyzed by Flow Cytometry. Alcoholism: Clinical and Experimental Research, 1995, 19, 1327-1330.	1.4	9
87	Amyloid-β Induces Cdh1-Mediated Rock2 Stabilization Causing Neurodegeneration. Frontiers in Pharmacology, 2022, 13, 884470.	1.6	9
88	Abrogating mitochondrial ROS in neurons or astrocytes reveals cell-specific impact on mouse behaviour. Redox Biology, 2021, 41, 101917.	3.9	8
89	Nitric oxide accounts for an increased glycolytic rate in activated astrocytes through a glycogenolysis-independent mechanism. Brain Research, 2002, 945, 131-134.	1.1	7
90	Preconditioning-Activated AKT Controls Neuronal Tolerance to Ischemia through the MDM2–p53 Pathway. International Journal of Molecular Sciences, 2021, 22, 7275.	1.8	6

#	Article	IF	CITATIONS
91	Fuel Utilization by Early Newborn Brain Is Preserved under Congenital Hypothyroidism in the Rat. Pediatric Research, 1996, 40, 410-414.	1.1	6
92	Ketogenesis from Lactate in Rat Liver during the Perinatal Period. Pediatric Research, 1992, 31, 415-418.	1.1	5
93	Nitric oxide-mediated mitochondrial impairment in neural cells: a role for glucose metabolism in neuroprotection. Progress in Brain Research, 2001, 132, 441-454.	0.9	5
94	Development of mitochondrial respiratory-chain complexes in neonatal rat brain. Biochemical Society Transactions, 1994, 22, 409S-409S.	1.6	2
95	Thyroid Hormones Regulate the Onset of Osmotic Activity of Rat Liver Mitochondria after Birth. , 0, .		2
96	Lactate utilization by neonatal rat liver <i>in vitro</i> . Biochemical Society Transactions, 1990, 18, 1274-1275.	1.6	1