Marcos Silveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7413276/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drought Sensitivity of the Amazon Rainforest. Science, 2009, 323, 1344-1347.	6.0	1,443
2	Hyperdominance in the Amazonian Tree Flora. Science, 2013, 342, 1243092.	6.0	873
3	Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.	13.7	796
4	Drought–mortality relationships for tropical forests. New Phytologist, 2010, 187, 631-646.	3.5	487
5	Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 2012, 9, 2203-2246.	1.3	487
6	Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science, 2017, 355, 925-931.	6.0	443
7	Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	3.4	397
8	Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9, 3381-3403.	1.3	373
9	Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 2019, 569, 404-408.	13.7	371
10	Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 2013, 22, 1261-1271.	2.7	365
11	A spatial model of tree α-diversity and tree density for the Amazon. Biodiversity and Conservation, 2003, 12, 2255-2277.	1.2	348
12	Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences, 2009, 6, 2677-2708.	1.3	295
13	An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science, 2002, 13, 439-450.	1.1	285
14	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	4.2	265
15	Diversity and carbon storage across the tropical forest biome. Scientific Reports, 2017, 7, 39102.	1.6	251
16	Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946.	2.7	248
17	Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 2015, 6, 6857.	5.8	214
18	Amazon forest response to repeated droughts. Global Biogeochemical Cycles, 2016, 30, 964-982.	1.9	201

MARCOS SILVEIRA

#	Article	IF	CITATIONS
19	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	6.0	198
20	Seasonal drought limits tree species across the Neotropics. Ecography, 2017, 40, 618-629.	2.1	143
21	Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances, 2015, 1, e1500936.	4.7	122
22	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	4.2	116
23	Species Distribution Modelling: Contrasting presence-only models with plot abundance data. Scientific Reports, 2018, 8, 1003.	1.6	113
24	Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests. Biogeosciences, 2016, 13, 2537-2562.	1.3	108
25	Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions. Carbon Balance and Management, 2017, 12, 1.	1.4	98
26	Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1). Geoscientific Model Development, 2014, 7, 1251-1269.	1.3	87
27	The number of tree species on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	86
28	Branch xylem density variations across the Amazon Basin. Biogeosciences, 2009, 6, 545-568.	1.3	84
29	Comparison of the mass and energy exchange of a pasture and a mature transitional tropical forest of the southern Amazon Basin during a seasonal transition. Global Change Biology, 2004, 10, 863-876.	4.2	82
30	Estimation of biomass and carbon stocks: the case of the Atlantic Forest. Biota Neotropica, 2008, 8, 21-29.	1.0	82
31	Panâ€ŧropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 2018, 27, 1366-1383.	2.7	78
32	Methods to estimate aboveground wood productivity from long-term forest inventory plots. Forest Ecology and Management, 2014, 320, 30-38.	1.4	75
33	Does the disturbance hypothesis explain the biomass increase in basinâ€wide Amazon forest plot data?. Global Change Biology, 2009, 15, 2418-2430.	4.2	74
34	Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biological Conservation, 2021, 260, 108849.	1.9	71
35	Fast demographic traits promote high diversification rates of Amazonian trees. Ecology Letters, 2014, 17, 527-536.	3.0	63
36	Tree mode of death and mortality risk factors across Amazon forests. Nature Communications, 2020, 11, 5515.	5.8	62

MARCOS SILVEIRA

#	Article	IF	CITATIONS
37	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.	2.7	62
38	Disentangling regional and local tree diversity in the Amazon. Ecography, 2009, 32, 46-54.	2.1	61
39	Dismantling Brazil's science threatens global biodiversity heritage. Perspectives in Ecology and Conservation, 2017, 15, 239-243.	1.0	60
40	Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nature Communications, 2021, 12, 2310.	5.8	59
41	Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology, 2020, 101, e03052.	1.5	57
42	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	1.6	53
43	Floristics and biogeography of vegetation in seasonally dry tropical regions. International Forestry Review, 2015, 17, 10-32.	0.3	50
44	Soil physical conditions limit palm and tree basal area in Amazonian forests. Plant Ecology and Diversity, 2014, 7, 215-229.	1.0	45
45	The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Scientific Data, 2019, 6, 198.	2.4	44
46	Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil ¹⁵ N: ¹⁴ N measurements. Plant Ecology and Diversity, 2014, 7, 173-187.	1.0	43
47	Evolutionary heritage influences Amazon tree ecology. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161587.	1.2	43
48	Estimating state-wide biomass carbon stocks for a REDD plan in Acre, Brazil. Forest Ecology and Management, 2011, 262, 555-560.	1.4	35
49	An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). , 2002, 13, 439.		35
50	Evolutionary diversity is associated with wood productivity in Amazonian forests. Nature Ecology and Evolution, 2019, 3, 1754-1761.	3.4	32
51	Rarity of monodominance in hyperdiverse Amazonian forests. Scientific Reports, 2019, 9, 13822.	1.6	28
52	Amazon tree dominance across forest strata. Nature Ecology and Evolution, 2021, 5, 757-767.	3.4	27
53	NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics. Ecology, 2020, 101, e03128.	1.5	26
54	Tree mortality, recruitment and growth in a bamboo dominated forest fragment in southwestern Amazonia, Brazil. Biota Neotropica, 2013, 13, 29-34.	1.0	25

MARCOS SILVEIRA

#	Article	IF	CITATIONS
55	The Whiteâ€sand Vegetation of Acre, Brazil. Biotropica, 2016, 48, 81-89.	0.8	23
56	Epiphytic (including hemiepiphytes) diversity in three timber species in the southwestern Amazon, Brazil. Biodiversity and Conservation, 2012, 21, 565-575.	1.2	20
57	Individual-Based Modeling of Amazon Forests Suggests That Climate Controls Productivity While Traits Control Demography. Frontiers in Earth Science, 2019, 7, .	0.8	19
58	Botanical advances in Southwestern Amazonia: The flora of Acre (Brazil) five years after the first Catalogue. Phytotaxa, 2014, 177, 101.	0.1	18
59	Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and Biogeography, 2022, 31, 1571-1588.	2.7	17
60	Effects of road infrastructure on forest value across a tri-national Amazonian frontier. Biological Conservation, 2015, 191, 674-681.	1.9	16
61	Trade-offs among forest value components in community forests of southwestern Amazonia. Ecology and Society, 2014, 19, .	1.0	14
62	Patterns of diversity and gaps in vascular (hemi-)epiphyte flora of Southwestern Amazonia. Phytotaxa, 2014, 166, 259.	0.1	14
63	The Program for Biodiversity Research in Brazil: The role of regional networks for biodiversity knowledge, dissemination, and conservation. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20201604.	0.3	9
64	Diversity and habitat preference of medium and large-sized mammals in an urban forest fragment of southwestern Amazon. Iheringia - Serie Zoologia, 2014, 104, 168-174.	0.5	6
65	Vertical stratification of phyllostomid bats assemblage (Chiroptera, Phyllostomidae) in a forest fragment in Brazilian Southwestern Amazon. Neotropical Biology and Conservation, 2020, 15, 107-120.	0.4	5
66	Linking high diversification rates of rapidly growing Amazonian plants to geophysical landscape transformations promoted by Andean uplift. Botanical Journal of the Linnean Society, 2022, 199, 36-52.	0.8	3
67	SPATIAL STRUCTURE OF Theobroma subincanumMart. AND Theobromaspeciosum Willd. ex Spreng.IN THE PARQUE NACIONAL DO JURUENA, MATO GROSSO STATE, BRAZIL. Revista Arvore, 2017, 41, .	0.5	1
68	Making and making use of a baseline: botanical research and the legacy of Chico Mendes. Desenvolvimento E Meio Ambiente, 0, 48, .	0.0	0
69	Diodia kuntzei K. Schum (Rubiaceae, Spermacoceae): a new record for the state of Acre, Brazil. Check List, 2020, 16, 675-679.	0.1	0
70	Primary modes of tree mortality in southwestern Amazon forests. Trees, Forests and People, 2022, 7, 100180.	0.8	0