Brian F Zamarron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/741299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adipose tissue dendritic cell signals are required to maintain T cell homeostasis and obesity-induced expansion. Molecular and Cellular Endocrinology, 2020, 505, 110740.	1.6	19
2	Weight Regain in Formerly Obese Mice Hastens Development of Hepatic Steatosis Due to Impaired Adipose Tissue Function. Obesity, 2020, 28, 1086-1097.	1.5	10
3	Inflammatory responses to dietary and surgical weight loss in male and female mice. Biology of Sex Differences, 2019, 10, 16.	1.8	25
4	Frontline Science: Rapid adipose tissue expansion triggers unique proliferation and lipid accumulation profiles in adipose tissue macrophages. Journal of Leukocyte Biology, 2018, 103, 615-628.	1.5	43
5	Macrophage Proliferation Sustains Adipose Tissue Inflammation in Formerly Obese Mice. Diabetes, 2017, 66, 392-406.	0.3	111
6	Weight loss independent changes in adipose tissue macrophage and T cell populations after sleeve gastrectomy in mice. Molecular Metabolism, 2017, 6, 317-326.	3.0	29
7	Changes in Skeletal Integrity and Marrow Adiposity during High-Fat Diet and after Weight Loss. Frontiers in Endocrinology, 2016, 7, 102.	1.5	90
8	Adipose Tissue Dendritic Cells Are Independent Contributors to Obesity-Induced Inflammation and Insulin Resistance. Journal of Immunology, 2016, 197, 3650-3661.	0.4	116
9	Adipose tissue fibrosis, hypertrophy, and hyperplasia: Correlations with diabetes in human obesity. Obesity, 2016, 24, 597-605.	1.5	250
10	Differences in Hematopoietic Stem Cells Contribute to Sexually Dimorphic Inflammatory Responses to High Fat Diet-induced Obesity. Journal of Biological Chemistry, 2015, 290, 13250-13262.	1.6	92
11	A subcutaneous adipose tissue–liver signalling axis controls hepatic gluconeogenesis. Nature Communications, 2015, 6, 6047.	5.8	75
12	Systemic NK cell ablation attenuates intra-abdominal adipose tissue macrophage infiltration in murine obesity. Obesity, 2014, 22, 2109-2114.	1.5	49
13	An MHC II-Dependent Activation Loop between Adipose Tissue Macrophages and CD4+ T Cells Controls Obesity-Induced Inflammation. Cell Reports, 2014, 9, 605-617.	2.9	167
14	Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells. Molecular Metabolism, 2014, 3, 664-675.	3.0	179
15	PARP-1 Controls Immunosuppressive Function of Regulatory T Cells by Destabilizing Foxp3. PLoS ONE, 2013, 8, e71590.	1.1	34
16	The molecular mechanisms of Foxp3 gene regulation. Seminars in Immunology, 2011, 23, 418-423.	2.7	60
17	Dual Roles of Immune Cells and Their Factors in Cancer Development and Progression. International Journal of Biological Sciences, 2011, 7, 651-658.	2.6	541
18	Control of the differentiation of regulatory T cells and TH17 cells by the DNA-binding inhibitor Id3. Nature Immunology, 2011, 12, 86-95.	7.0	143

#	ARTICLE	IF	CITATIONS
19	Control of the development of CD8αα+ intestinal intraepithelial lymphocytes by TGF-β. Nature Immunology, 2011, 12, 312-319.	7.0	134
20	Mutation of inhibitory helix-loop-helix protein Id3 causes Î ³ δT-cell lymphoma in mice. Blood, 2010, 116, 5615-5621.	0.6	28