Maria Rubino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/741254/publications.pdf Version: 2024-02-01

MADIA PURINO

#	Article	IF	CITATIONS
1	Compostability of Bioplastic Packaging Materials: An Overview. Macromolecular Bioscience, 2007, 7, 255-277.	2.1	415
2	Atmospheric and soil degradation of aliphatic–aromatic polyester films. Polymer Degradation and Stability, 2010, 95, 99-107.	2.7	149
3	Grafting of maleic anhydride on poly(L-lactic acid). Effects on physical and mechanical properties. Polymer Testing, 2012, 31, 333-344.	2.3	123
4	Postharvest shelf life extension of blueberries using a biodegradable package. Food Chemistry, 2008, 110, 120-127.	4.2	105
5	Concurrent solvent induced crystallization and hydrolytic degradation of PLA by water-ethanol solutions. Polymer, 2016, 99, 315-323.	1.8	98
6	Reactive functionalization of poly(lactic acid), PLA: Effects of the reactive modifier, initiator and processing conditions on the final grafted maleic anhydride content and molecular weight of PLA. Polymer Degradation and Stability, 2013, 98, 2697-2708.	2.7	89
7	Development of an automatic laboratory-scale respirometric system to measure polymer biodegradability. Polymer Testing, 2006, 25, 1006-1016.	2.3	75
8	Poly(lactic acid) mass transfer properties. Progress in Polymer Science, 2018, 86, 85-121.	11.8	71
9	Impact of Nanoclays on the Biodegradation of Poly(Lactic Acid) Nanocomposites. Polymers, 2018, 10, 202.	2.0	65
10	A new technique to prevent the main post harvest diseases in berries during storage: Inclusion complexes β-cyclodextrin-hexanal. International Journal of Food Microbiology, 2007, 118, 164-172.	2.1	52
11	Poly(<scp>L</scp> â€lactic acid) with added αâ€tocopherol and resveratrol: optical, physical, thermal and mechanical properties. Polymer International, 2012, 61, 418-425.	1.6	49
12	Toughening of Poly(lactic acid) and Thermoplastic Cassava Starch Reactive Blends Using Graphene Nanoplatelets. Polymers, 2018, 10, 95.	2.0	49
13	Field Performance of Aliphatic-aromatic Copolyester Biodegradable Mulch Films in a Fresh Market Tomato Production System. HortTechnology, 2008, 18, 605-610.	0.5	49
14	Chemical recycling of poly(lactic acid) by water-ethanol solutions. Polymer Degradation and Stability, 2018, 149, 28-38.	2.7	44
15	Control of hydrolytic degradation of Poly(lactic acid) by incorporation of chain extender: From bulk to surface erosion. Polymer Testing, 2018, 67, 190-196.	2.3	43
16	Effect of Maleicâ€Anhydride Grafting on the Physical and Mechanical Properties of Poly(<scp>L</scp> â€lactic acid)/Starch Blends. Macromolecular Materials and Engineering, 2013, 298, 624-633.	1.7	42
17	Release of Nanoclay and Surfactant from Polymer–Clay Nanocomposites into a Food Simulant. Environmental Science & Technology, 2014, 48, 13617-13624.	4.6	42
18	Measuring gel content of aromatic polyesters using FTIR spectrophotometry and DSC. Polymer Testing, 2008, 27, 55-60.	2.3	41

Maria Rubino

#	Article	IF	CITATIONS
19	Effect of nanoparticles on the hydrolytic degradation of PLA-nanocomposites by water-ethanol solutions. Polymer Degradation and Stability, 2017, 146, 287-297.	2.7	41
20	Effects of molecular weight and grafted maleic anhydride of functionalized polylactic acid used in reactive compatibilized binary and ternary blends of polylactic acid and thermoplastic cassava starch. Journal of Applied Polymer Science, 2015, 132, .	1.3	37
21	Gloss Evaluation of Curved-surface Fruits and Vegetables. Food and Bioprocess Technology, 2009, 2, 300-307.	2.6	33
22	Migration of α-tocopherol and resveratrol from poly(L-lactic acid)/starch blends films into ethanol. Journal of Food Engineering, 2013, 116, 814-828.	2.7	33
23	Release of Acetaldehyde from β-Cyclodextrins Inhibits Postharvest Decay Fungi in Vitro. Journal of Agricultural and Food Chemistry, 2007, 55, 7205-7212.	2.4	31
24	Fluorescent labeling and tracking of nanoclay. Nanoscale, 2013, 5, 164-168.	2.8	31
25	Graphene modifies the biodegradation of poly(lactic acid)-thermoplastic cassava starch reactive blend films. Polymer Degradation and Stability, 2019, 164, 187-197.	2.7	31
26	Migration of antioxidants from polylactic acid films: A parameter estimation approach and an overview of the current mass transfer models. Food Research International, 2018, 103, 515-528.	2.9	29
27	Evaluation of chlorine dioxide as an antimicrobial against Botrytis cinerea in California strawberries. Food Packaging and Shelf Life, 2016, 9, 45-54.	3.3	25
28	Reaction and diffusion of chlorine dioxide gas under dark and light conditions at different temperatures. Journal of Food Engineering, 2015, 144, 20-28.	2.7	24
29	Effect of cut edge area on the migration of BHT from polypropylene film into a food simulant. Polymer Testing, 2016, 51, 190-194.	2.3	16
30	Antimicrobial efficacy of gaseous chlorine dioxide against <i>Salmonella enterica</i> Typhimurium on grape tomato (<i>Lycopersicon esculentum</i>). International Journal of Food Science and Technology, 2016, 51, 2225-2232.	1.3	15
31	Modeling of surfactant release from polymer-clay nanocomposites into ethanol. Polymer Testing, 2016, 50, 57-63.	2.3	15
32	Mass transfer study of chlorine dioxide gas through polymeric packaging materials. Journal of Applied Polymer Science, 2009, 114, 2929-2936.	1.3	12
33	Kinetic Study of Bisphenol A Migration from Low-Density Polyethylene Films into Food Simulants. Industrial & Engineering Chemistry Research, 2015, 54, 3711-3716.	1.8	12
34	Novel Active Surface Prepared by Embedded Functionalized Clays in an Acrylate Coating. ACS Applied Materials & Interfaces, 2015, 7, 24944-24949.	4.0	10
35	Interaction of nanoclay-reinforced packaging nanocomposites with food simulants and compost environments. Advances in Food and Nutrition Research, 2019, 88, 275-298.	1.5	10
36	Effect of chlorine dioxide gas on physical, thermal, mechanical, and barrier properties of polymeric packaging materials. Journal of Applied Polymer Science, 2010, 115, 1742-1750.	1.3	9

Maria Rubino

#	Article	IF	CITATIONS
37	Effect of the Solvent on the Size of Clay Nanoparticles in Solution as Determined Using an Ultraviolet–Visible (UV-Vis) Spectroscopy Methodology. Applied Spectroscopy, 2015, 69, 671-678.	1.2	9
38	Permeation of Oxygen, Water Vapor, and Limonene through Printed and Unprinted Biaxially Oriented Polypropylene Films. Journal of Agricultural and Food Chemistry, 2001, 49, 3041-3045.	2.4	8
39	In situ characterization of organo-modified and unmodified montmorillonite aqueous suspensions by UV–visible spectroscopy. Journal of Colloid and Interface Science, 2015, 456, 155-160.	5.0	8
40	Carbon nanotube release from polymers into a food simulant. Environmental Pollution, 2017, 229, 818-826.	3.7	7
41	Impact of polymer processing on sorption of benzaldehyde vapor in amorphous and semicrystalline polypropylene. Journal of Applied Polymer Science, 2008, 110, 1509-1514.	1.3	6
42	Release of surfactants from organo-modified montmorillonite into solvents: Implications for polymer nanocomposites. Applied Clay Science, 2015, 105-106, 107-112.	2.6	6
43	Use of a magnetic suspension microbalance to measure organic vapor sorption for evaluating the impact of polymer converting process. Polymer Testing, 2007, 26, 1082-1089.	2.3	5
44	In-situ changes of thermo-mechanical properties of poly(lactic acid) film immersed in alcohol solutions. Polymer Testing, 2020, 82, 106320.	2.3	5
45	Encapsulation of Naturally Occurring Antifungal Compound into ß-cyclodextrins: A New Technology for Reducing Postharvest Losses. Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 990A-990	0.5	0