
Hui Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7412330/publications.pdf Version: 2024-02-01

HUI CHEN

#	Article	IF	CITATIONS
1	P450 Enzymes: Their Structure, Reactivity, and Selectivity—Modeled by QM/MM Calculations. Chemical Reviews, 2010, 110, 949-1017.	47.7	924
2	One-Pot Reaction to Synthesize Water-Soluble Magnetite Nanocrystals. Chemistry of Materials, 2004, 16, 1391-1393.	6.7	338
3	Exchange-enhanced reactivity in bond activation by metal–oxo enzymes and synthetic reagents. Nature Chemistry, 2011, 3, 19-27.	13.6	300
4	Mn-Catalyzed Aromatic Câ $\epsilon^{\!\!\!\!\!\!\!\!\!\!}$ H Alkenylation with Terminal Alkynes. Journal of the American Chemical Society, 2013, 135, 1264-1267.	13.7	299
5	Cobalt-Catalyzed Cyclization of Aliphatic Amides and Terminal Alkynes with Silver-Cocatalyst. Journal of the American Chemical Society, 2015, 137, 12990-12996.	13.7	242
6	Nature of the Feâ^'O ₂ Bonding in Oxy-Myoglobin: Effect of the Protein. Journal of the American Chemical Society, 2008, 130, 14778-14790.	13.7	234
7	Hydrogenâ€Abstraction Reactivity Patterns from Aâ€toâ€Y: The Valence Bond Way. Angewandte Chemie - International Edition, 2012, 51, 5556-5578.	13.8	233
8	The Directive of the Protein: How Does Cytochrome P450 Select the Mechanism of Dopamine Formation?. Journal of the American Chemical Society, 2011, 133, 7977-7984.	13.7	214
9	Oriented Electric Fields Accelerate Diels–Alder Reactions and Control the <i>endo</i> / <i>exo</i> Selectivity. ChemPhysChem, 2010, 11, 301-310.	2.1	208
10	Selective Antimicrobial Activities and Action Mechanism of Micelles Self-Assembled by Cationic Oligomeric Surfactants. ACS Applied Materials & Interfaces, 2016, 8, 4242-4249.	8.0	165
11	Amine-accelerated manganese-catalyzed aromatic C–H conjugate addition to α,β-unsaturated carbonyls. Chemical Communications, 2014, 50, 14558-14561.	4.1	157
12	Two-State Reactivity in Low-Valent Iron-Mediated C–H Activation and the Implications for Other First-Row Transition Metals. Journal of the American Chemical Society, 2016, 138, 3715-3730.	13.7	136
13	The Valence Bond Way: Reactivity Patterns of Cytochrome P450 Enzymes and Synthetic Analogs. Accounts of Chemical Research, 2010, 43, 1154-1165.	15.6	123
14	Exchange-Enhanced H-Abstraction Reactivity of High-Valent Nonheme Iron(IV)-Oxo from Coupled Cluster and Density Functional Theories. Journal of Physical Chemistry Letters, 2010, 1, 1533-1540.	4.6	116
15	Enhancement of Ultraweak Chemiluminescence from Reaction of Hydrogen Peroxide and Bisulfite by Water-Soluble Carbon Nanodots. Journal of Physical Chemistry C, 2011, 115, 21707-21714.	3.1	115
16	Assessment of Theoretical Methods for Complexes of Gold(I) and Gold(III) with Unsaturated Aliphatic Hydrocarbon: Which Density Functional Should We Choose?. Journal of Chemical Theory and Computation, 2011, 7, 4002-4011.	5.3	113
17	Enhanced Reactivities of Iron(IV)â€Oxo Porphyrin Ï€â€Cation Radicals in Oxygenation Reactions by Electronâ€Donating Axial Ligands. Chemistry - A European Journal, 2009, 15, 10039-10046.	3.3	110
18	Catalyzing Carbonization of Polypropylene Itself by Supported Nickel Catalyst during Combustion of Polypropylene/Clay Nanocomposite for Improving Fire Retardancy. Chemistry of Materials, 2005, 17, 2799-2802.	6.7	103

#	Article	IF	CITATIONS
19	Effect of External Electric Fields on the Câ''H Bond Activation Reactivity of Nonheme Ironâ''Oxo Reagents. Journal of the American Chemical Society, 2008, 130, 3319-3327.	13.7	97
20	Mn-Catalyzed Three-Component Reactions of Imines/Nitriles, Grignard Reagents, and Tetrahydrofuran: An Expedient Access to 1,5-Amino/Keto Alcohols. Journal of the American Chemical Society, 2014, 136, 6558-6561.	13.7	97
21	Ab initiostudy on deactivation pathways of excited 9H-guanine. Journal of Chemical Physics, 2006, 124, 154315.	3.0	93
22	Chemiluminescence Arising from the Decomposition of Peroxymonocarbonate and Enhanced by CdTe Quantum Dots. Journal of Physical Chemistry A, 2010, 114, 10049-10058.	2.5	92
23	Structural Characterization of the Fleeting Ferric Peroxo Species in Myoglobin:  Experiment and Theory. Journal of the American Chemical Society, 2007, 129, 13394-13395.	13.7	89
24	Three-Coordinate Iron(IV) Bisimido Complexes with Aminocarbene Ligation: Synthesis, Structure, and Reactivity. Journal of the American Chemical Society, 2015, 137, 14196-14207.	13.7	88
25	Theoretical Study toward Understanding Ultrafast Internal Conversion of Excited 9H-Adenine. Journal of Physical Chemistry A, 2005, 109, 8443-8446.	2.5	87
26	Multireference and Multiconfiguration Ab Initio Methods in Heme-Related Systems: What Have We Learned So Far?. Journal of Physical Chemistry B, 2011, 115, 1727-1742.	2.6	82
27	Iron arbonylâ€Catalyzed Redoxâ€Neutral [4+2] Annulation of Nâ^'H Imines and Internal Alkynes by Câ^'H Bond Activation. Angewandte Chemie - International Edition, 2016, 55, 5268-5271.	13.8	81
28	Palladium-Catalyzed Dual Ligand-Enabled Alkylation of Silyl Enol Ether and Enamide under Irradiation: Scope, Mechanism, and Theoretical Elucidation of Hybrid Alkyl Pd(I)-Radical Species. ACS Catalysis, 2020, 10, 1334-1343.	11.2	79
29	Why Is Cobalt the Best Transition Metal in Transition-Metal Hangman Corroles for O–O Bond Formation during Water Oxidation?. Journal of Physical Chemistry Letters, 2012, 3, 2315-2319.	4.6	78
30	External Electric Field Can Control the Catalytic Cycle of Cytochrome P450 _{cam} : A QM/MM Study. Journal of Physical Chemistry Letters, 2010, 1, 2082-2087.	4.6	76
31	Supramolecular Conjugated Polymer Materials for in Situ Pathogen Detection. ACS Applied Materials & Interfaces, 2016, 8, 31550-31557.	8.0	73
32	Biofilm Inhibition and Elimination Regulated by Cationic Conjugated Polymers. ACS Applied Materials & Interfaces, 2017, 9, 16933-16938.	8.0	73
33	Quantum Mechanical/Molecular Mechanical Study of Mechanisms of Heme Degradation by the Enzyme Heme Oxygenase:  The Strategic Function of the Water Cluster. Journal of the American Chemical Society, 2008, 130, 1953-1965.	13.7	71
34	An Alkeneâ€Promoted Borane atalyzed Highly Stereoselective Hydrogenation of Alkynes to Give <i>Z</i> ― and <i>E</i> â€Alkenes. Chemistry - A European Journal, 2015, 21, 3495-3501.	3.3	67
35	NR Transfer Reactivity of Azo-Compound I of P450. How Does the Nitrogen Substituent Tune the Reactivity of the Species toward CH and CC Activation?. Journal of Physical Chemistry B, 2007, 111, 10288-10299.	2.6	66
36	Multiple Low-Lying States for Compound I of P450 _{cam} and Chloroperoxidase Revealed from Multireference Ab Initio QM/MM Calculations. Journal of Chemical Theory and Computation, 2010, 6, 940-953.	5.3	66

#	Article	IF	CITATIONS
37	Modeling C–H Abstraction Reactivity of Nonheme Fe(IV)O Oxidants with Alkanes: What Role Do Counter Ions Play?. Journal of Physical Chemistry Letters, 2011, 2, 2610-2617.	4.6	66
38	Efficient Conjugated Polymer–Methyl Viologen Electron Transfer System for Controlled Photo-Driven Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 10355-10359.	8.0	66
39	Dioxygen Activation by a Non-Heme Iron(II) Complex: Theoretical Study toward Understanding Ferric–Superoxo Complexes. Journal of Chemical Theory and Computation, 2012, 8, 915-926.	5.3	65
40	Theoretical and Experimental Studies of the Conversion of Chromopyrrolic Acid to an Antitumor Derivative by Cytochrome P450 StaP: The Catalytic Role of Water Molecules. Journal of the American Chemical Society, 2009, 131, 6748-6762.	13.7	64
41	Determination of Ammonia in Water Based on Chemiluminescence Resonance Energy Transfer between Peroxymonocarbonate and Branched NaYF ₄ :Yb ³⁺ /Er ³⁺ Nanoparticles. Analytical Chemistry, 2012, 84, 8871-8879.	6.5	63
42	Performance of Density Functionals for Activation Energies of Zr-Mediated Reactions. Journal of Chemical Theory and Computation, 2013, 9, 4735-4743.	5.3	62
43	Low-Valent, High-Spin Chromium-Catalyzed Cleavage of Aromatic Carbon–Nitrogen Bonds at Room Temperature: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society, 2017, 139, 15182-15190.	13.7	62
44	Quantum Mechanical/Molecular Mechanical Study on the Mechanisms of Compound I Formation in the Catalytic Cycle of Chloroperoxidase: An Overview on Heme Enzymes. Journal of Physical Chemistry B, 2008, 112, 9490-9500.	2.6	60
45	How Accurate Can a Local Coupled Cluster Approach Be in Computing the Activation Energies of Late-Transition-Metal-Catalyzed Reactions with Au, Pt, and Ir?. Journal of Chemical Theory and Computation, 2012, 8, 3119-3127.	5.3	60
46	An Iron(II) Ylide Complex as a Masked Open-Shell Iron Alkylidene Species in Its Alkylidene-Transfer Reactions with Alkenes. Journal of the American Chemical Society, 2017, 139, 3876-3888.	13.7	59
47	Manganeseâ€Catalyzed Redoxâ€Neutral Câ^'H Olefination of Ketones with Unactivated Alkenes. Angewandte Chemie - International Edition, 2018, 57, 12071-12075.	13.8	59
48	A tutorial for understanding chemical reactivity through the valence bond approach. Chemical Society Reviews, 2014, 43, 4968-4988.	38.1	58
49	Fluorescent Dendritic Organogels Based on 2â€{2′â€Hydroxyphenyl)benzoxazole: Emission Enhancement and Multiple Stimuliâ€Responsive Properties. Chemistry - A European Journal, 2015, 21, 11018-11028.	3.3	58
50	Understanding the Effects of Bidentate Directing Groups: A Unified Rationale for sp2 and sp3 C–H Bond Activations. Journal of Organic Chemistry, 2015, 80, 4672-4682.	3.2	58
51	Oriented External Electric Fields: Tweezers and Catalysts for Reactivity in Halogen-Bond Complexes. Journal of the American Chemical Society, 2019, 141, 7122-7136.	13.7	57
52	A Facile N≡N Bond Cleavage by the Trinuclear Metal Center in Vanadium Carbide Cluster Anions V ₃ C ₄ [–] . Journal of the American Chemical Society, 2020, 142, 10747-10754.	13.7	57
53	Cu-Catalyzed Arylcarbocyclization of Alkynes with Diaryliodonium Salts through C–C Bond Formation on Inert C _(sp3) –H Bond. Organic Letters, 2014, 16, 3776-3779.	4.6	56
54	Theoretical Study on the Excitation Energies of Six Tautomers of Guanine:Â Evidence for the Assignment of the Rare Tautomers. Journal of Physical Chemistry A, 2006, 110, 12360-12362.	2.5	53

#	Article	IF	CITATIONS
55	Trends in Aromatic Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes: A Valence Bond Modeling. Journal of Chemical Theory and Computation, 2011, 7, 327-339.	5.3	53
56	Assessment of DFT Methods for Computing Activation Energies of Mo/W-Mediated Reactions. Journal of Chemical Theory and Computation, 2015, 11, 4601-4614.	5.3	52
57	Substrate-Dependent Two-State Reactivity in Iron-Catalyzed Alkene [2+2] Cycloaddition Reactions. Journal of the American Chemical Society, 2017, 139, 15564-15567.	13.7	52
58	Lessons on O2 and NO bonding to heme from ab initio multireference/multiconfiguration and DFT calculations. Journal of Biological Inorganic Chemistry, 2011, 16, 841-855.	2.6	51
59	Origins of Selective C(sp ²)–H Activation Using Transition Metal Complexes with N,N-Bidentate Directing Groups: A Combined Theoretical–Experimental Study. ACS Catalysis, 2014, 4, 649-656.	11.2	51
60	Formation of Gasâ€₽hase Formate in Thermal Reactions of Carbon Dioxide with Diatomic Iron Hydride Anions. Angewandte Chemie - International Edition, 2017, 56, 4187-4191.	13.8	50
61	Electron Transfer Activation of Chromopyrrolic Acid by Cytochrome P450 En Route to the Formation of an Antitumor Indolocarbazole Derivative: Theory Supports Experiment. Journal of the American Chemical Society, 2008, 130, 7170-7171.	13.7	49
62	Transition from exohedral to endohedral structures of AuGe _n ^{â^'} (n = 2–12) clusters: photoelectron spectroscopy and ab initio calculations. Physical Chemistry Chemical Physics, 2016, 18, 20321-20329.	2.8	48
63	Preparation of Conjugated Polymer Grafted with H ₂ O ₂ -Sensitive Prodrug for Cell Imaging and Tumor Cell Killing. ACS Applied Materials & Interfaces, 2016, 8, 42-46.	8.0	48
64	Performance of Density Functionals for Activation Energies of Re-Catalyzed Organic Reactions. Journal of Chemical Theory and Computation, 2014, 10, 579-588.	5.3	47
65	Thermal Methane Conversion to Syngas Mediated by Rh ₁ -Doped Aluminum Oxide Cluster Cations RhAl ₃ O ₄ ⁺ . Journal of the American Chemical Society, 2016, 138, 12854-12860.	13.7	47
66	Perferryl Fe ^V –Oxo Nonheme Complexes: Do They Have High-Spin or Low-Spin Ground States?. Journal of Chemical Theory and Computation, 2011, 7, 3049-3053.	5.3	46
67	Direct Vicinal Disubstitution of Diaryliodonium Salts by Pyridine <i>N</i> â€oxides and <i>N</i> â€amidates by a 1,3â€Radical Rearrangement. Angewandte Chemie - International Edition, 2013, 52, 7574-7578.	13.8	46
68	Valence bond modelling and density functional theory calculations of reactivity and mechanism of cytochrome P450 enzymes: thioether sulfoxidation. Faraday Discussions, 0, 145, 49-70.	3.2	45
69	Comparative Assessment of DFT Performances in Ru- and Rh-Promoted $\ddot{I}f$ -Bond Activations. Journal of Chemical Theory and Computation, 2015, 11, 1428-1438.	5.3	45
70	Supramolecular Conjugated Polymer Systems with Controlled Antibacterial Activity. Langmuir, 2017, 33, 1116-1120.	3.5	45
71	Copper(II)/Silver(I) atalyzed Sequential Alkynylation and Annulation of Aliphatic Amides with Alkynyl Carboxylic Acids: Efficient Synthesis of Pyrrolidones. Advanced Synthesis and Catalysis, 2016, 358, 792-807.	4.3	44
72	Chromium- and Cobalt-Catalyzed, Regiocontrolled Hydrogenation of Polycyclic Aromatic Hydrocarbons: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society, 2019, 141, 9018-9026.	13.7	44

#	Article	IF	CITATIONS
73	Reactivity of Transition-Metal Complexes in Excited States: C–O Bond Coupling Reductive Elimination of a Ni(II) Complex Is Elicited by the Metal-to-Ligand Charge Transfer State. ACS Catalysis, 2020, 10, 1-6.	11.2	44
74	Are DFT Methods Accurate in Mononuclear Ruthenium-Catalyzed Water Oxidation? An ab Initio Assessment. Journal of Chemical Theory and Computation, 2013, 9, 1872-1879.	5.3	43
75	Efficient photocatalytic hydrogen evolution with end-group-functionalized cobaloxime catalysts in combination with graphite-like C ₃ N ₄ . RSC Advances, 2014, 4, 18853-18861.	3.6	42
76	Guest-dependent directional complexation based on triptycene derived oxacalixarene: formation of oriented rotaxanes. Chemical Science, 2016, 7, 469-474.	7.4	42
77	Halogen-bonding for visual chloride ion sensing: a case study using supramolecular poly(aryl ether) dendritic organogel systems. Chemical Communications, 2016, 52, 2269-2272.	4.1	41
78	Cationic Conjugated Polymers-Induced Quorum Sensing of Bacteria Cells. Analytical Chemistry, 2016, 88, 2985-2988.	6.5	41
79	Synthetic Applications of Transitionâ€Metal atalyzed Câ^'P Bond Cleavage. Chemistry - an Asian Journal, 2018, 13, 2164-2173.	3.3	41
80	Which Density Functional Is the Best in Computing C–H Activation Energies by Pincer Complexes of Late Platinum Group Metals?. Journal of Chemical Theory and Computation, 2012, 8, 2991-2996.	5.3	40
81	Nonheme iron-oxo and -superoxo reactivities: O2 binding and spin inversion probability matter. Chemical Communications, 2012, 48, 2189.	4.1	39
82	Enzymatic Ring-Opening Mechanism of Verdoheme by the Heme Oxygenase: A Combined X-ray Crystallography and QM/MM Study. Journal of the American Chemical Society, 2010, 132, 12960-12970.	13.7	38
83	Flow-injection analysis of hydrogen peroxide based on carbon nanospheres catalyzed hydrogen carbonate–hydrogen peroxide chemiluminescent reaction. Analyst, The, 2011, 136, 1957.	3.5	36
84	Comparison of chemiluminescence enzyme immunoassay based on magnetic microparticles with traditional colorimetric ELISA for the detection of serum 1±-fetoprotein. Journal of Pharmaceutical Analysis, 2012, 2, 130-135.	5.3	36
85	Factors That Control the Reactivity of Cobalt(III)–Nitrosyl Complexes in Nitric Oxide Transfer and Dioxygenation Reactions: A Combined Experimental and Theoretical Investigation. Journal of the American Chemical Society, 2016, 138, 7753-7762.	13.7	36
86	One-pot synthesis of fluorescent 2,4-dialkenylindoles by rhodium-catalyzed dual C–H functionalization. Organic Chemistry Frontiers, 2017, 4, 455-459.	4.5	36
87	Dinitrogen Activation by Heteronuclear Metal Carbide Cluster Anions FeTaC ₂ [–] : A 5d Early and 3d Late Transition Metal Strategy. Journal of the American Chemical Society, 2021, 143, 19224-19231.	13.7	36
88	Unactivated C(sp ³)–H hydroxylation through palladium catalysis with H ₂ O as the oxygen source. Chemical Communications, 2015, 51, 14929-14932.	4.1	35
89	Convergent Theoretical Prediction of Reactive Oxidant Structures in Diiron Arylamine Oxygenases AurF and Cmll: Peroxo or Hydroperoxo?. Journal of the American Chemical Society, 2017, 139, 13038-13046.	13.7	35
90	Origin of Nitric Oxide Reduction Activity in Flavo–Diiron NO Reductase: Key Roles of the Second Coordination Sphere. Angewandte Chemie - International Edition, 2019, 58, 3795-3799.	13.8	35

#	Article	IF	CITATIONS
91	Photoelectron imaging spectroscopy of MoCâ^' and NbNâ^' diatomic anions: A comparative study. Journal of Chemical Physics, 2015, 142, 164301.	3.0	33
92	Visual Detection of Multiplex MicroRNAs Using Cationic Conjugated Polymer Materials. ACS Applied Materials & Interfaces, 2016, 8, 1520-1526.	8.0	33
93	Dinitrogen Activation and Functionalization by Heteronuclear Metal Cluster Anions FeV ₂ C ₂ [–] at Room Temperature. Journal of Physical Chemistry Letters, 2020, 11, 9990-9994.	4.6	33
94	Compound I in Heme Thiolate Enzymes: A Comparative QM/MM Study. Journal of Physical Chemistry A, 2008, 112, 13128-13138.	2.5	32
95	A trimanganese cluster-based 2D layer framework with facile single-crystal-to-single-crystal transformation to afford a 1D chain structure. CrystEngComm, 2010, 12, 1467.	2.6	32
96	Plasmon-Assisted Enhancement of the Ultraweak Chemiluminescence Using Cu/Ni Metal Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 14796-14803.	3.1	32
97	Iodine-promoted 2-arylsulfanylphenol formation using cyclohexanones as phenol source. RSC Advances, 2014, 4, 44621-44628.	3.6	32
98	Nickel-catalyzed direct formation of the C–S bonds of aryl sulfides from arylsulfonyl chlorides and aryl iodides using Mn as a reducing agent. Organic Chemistry Frontiers, 2017, 4, 31-36.	4.5	32
99	Acid-promoted bicyclization of arylacetylenes to benzobicyclo[3.2.1]octanes through cationic rearrangements. Chemical Communications, 2016, 52, 4537-4540.	4.1	31
100	Probing Ligand Effects on O–O Bond Formation of Ru-Catalyzed Water Oxidation: A Computational Survey. Inorganic Chemistry, 2014, 53, 7130-7136.	4.0	30
101	Activation of Methane Promoted by Adsorption of CO on Mo ₂ C ₂ ^{â^'} Cluster Anions. Angewandte Chemie - International Edition, 2016, 55, 5760-5764.	13.8	29
102	What Kinds of Ferryl Species Exist for Compound II of Chloroperoxidase? A Dialog of Theory with Experiment. Journal of Physical Chemistry B, 2009, 113, 7912-7917.	2.6	28
103	Seleniumâ€Promoted Intramolecular Oxidative Amidation of 2â€(Arylamino)acetophenones for the Synthesis of <i>N</i> â€Arylisatins. European Journal of Organic Chemistry, 2013, 2013, 4229-4232.	2.4	28
104	Guanidinium-pendant oligofluorene for rapid and specific identification of antibiotics with membrane-disrupting ability. Chemical Communications, 2015, 51, 4036-4039.	4.1	28
105	Successive Cu/Pd transmetalation relay catalysis in stereoselective synthesis of tetraarylethenes. Organic Chemistry Frontiers, 2015, 2, 1366-1373.	4.5	28
106	Calculated Mechanism of Cyanobacterial Aldehyde-Deformylating Oxygenase: Asymmetric Aldehyde Activation by a Symmetric Diiron Cofactor. Journal of Physical Chemistry Letters, 2016, 7, 4427-4432.	4.6	27
107	Mechanism of Organophosphonate Catabolism by Diiron Oxygenase PhnZ: A Third Iron-Mediated O–O Activation Scenario in Nature. ACS Catalysis, 2017, 7, 3521-3531.	11.2	27
108	Effects of Substrate, Protein Environment, and Proximal Ligand Mutation on Compound I and Compound 0 of Chloroperoxidase. Journal of Physical Chemistry A, 2009, 113, 11763-11771.	2.5	26

#	Article	IF	CITATIONS
109	A New Class of Tunable Dendritic Diphosphine Ligands: Synthesis and Applications in the Ruâ€Catalyzed Asymmetric Hydrogenation of Functionalized Ketones. Chemistry - A European Journal, 2014, 20, 9969-9978.	3.3	26
110	Photocatalytic hydrogen evolution by two comparable [FeFe]â€hydrogenase mimics assembled to the surface of ZnS. Applied Organometallic Chemistry, 2014, 28, 267-273.	3.5	25
111	Generation of Carbon Radical from Iron-Hydride/Alkene: Exchange-Enhanced Reactivity Selects the Reactive Spin State. ACS Catalysis, 2019, 9, 6080-6086.	11.2	25
112	Ligand-Dependent Multi-State Reactivity in Cobalt(III)-Catalyzed C–H Activations. ACS Catalysis, 2019, 9, 1962-1972.	11.2	25
113	A thiolate-bridged FeIVFeIV μ-nitrido complex and its hydrogenation reactivity toward ammonia formation. Nature Chemistry, 2022, 14, 46-52.	13.6	25
114	Syntheses, Structures, and Magnetic Properties of a Family of Tetra-, Hexa-, and Nonanuclear Mn/Ni Heterometallic Clusters. Inorganic Chemistry, 2011, 50, 10342-10352.	4.0	24
115	A Pronounced Halogen Effect on the Organogelation Properties of Peripherally Halogen Functionalized Poly(benzyl ether) Dendrons. Chemistry - A European Journal, 2016, 22, 4980-4990.	3.3	24
116	Manganeseâ€Catalyzed Asymmetric Formal Hydroamination of Allylic Alcohols: A Remarkable Macrocyclic Ligand Effect. Angewandte Chemie - International Edition, 2022, 61, .	13.8	23
117	A Systematic Study of Peripherally Multiple Aromatic Esterâ€Functionalized Poly(benzyl ether) Dendrons for the Fabrication of Organogels: Structure–Property Relationships and Thixotropic Property. Chemistry - A European Journal, 2014, 20, 7069-7082.	3.3	22
118	Spin–Orbit Coupling and Outer-Core Correlation Effects in Ir- and Pt-Catalyzed C–H Activation. Journal of Chemical Theory and Computation, 2012, 8, 1641-1645.	5.3	21
119	Octanuclear MnIII6MnIILn (Ln = Gd, Dy and Er) clusters with a novel core topology: syntheses, structures, and magnetic properties. Dalton Transactions, 2013, 42, 4908.	3.3	21
120	Cationic Poly(<i>p</i> â€phenylene vinylene) Materials as a Multifunctional Platform for Lightâ€Enhanced siRNA Delivery. Chemistry - an Asian Journal, 2016, 11, 2686-2689.	3.3	21
121	Design of antibacterial peptide-like conjugated molecule with broad spectrum antimicrobial ability. Science China Chemistry, 2018, 61, 113-117.	8.2	21
122	The Electronic Structure of Reduced Phosphovanadomolybdates and the Implications on Their Use in Catalytic Oxidation Initiated by Electron Transfer. Journal of Physical Chemistry C, 2007, 111, 7711-7719.	3.1	20
123	Atom- and Step-Efficient Construction of Five-Membered Carbocycles with Alkenes and Alkynes Catalyzed by AgSbF6. ACS Catalysis, 2018, 8, 7760-7765.	11.2	20
124	Will P450 _{cam} Hydroxylate or Desaturate Alkanes? QM and QM/MM Studies. Journal of Physical Chemistry Letters, 2011, 2, 2229-2235.	4.6	19
125	Ironâ€Carbonylâ€Catalyzed Redoxâ€Neutral [4+2] Annulation of Nâ^'H Imines and Internal Alkynes by Câ^'H Bond Activation. Angewandte Chemie, 2016, 128, 5354-5357.	2.0	19
126	Chemiluminescence enzyme immunoassay based on magnetic nanoparticles for detection of hepatocellular carcinoma marker glypican-3. Journal of Pharmaceutical Analysis, 2011, 1, 166-174.	5.3	18

#	Article	IF	CITATIONS
127	What Factors Control O ₂ Binding and Release Thermodynamics in Mononuclear Ruthenium Water Oxidation Catalysts? A Theoretical Exploration. Inorganic Chemistry, 2013, 52, 5088-5096.	4.0	18
128	CH Bond Activation by Early Transition Metal Carbide Cluster Anion MoC ₃ ^{â^'} . Chemistry - A European Journal, 2015, 21, 17748-17756.	3.3	18
129	Preparation of Reactive Oligo(<i>p</i> â€Phenylene Vinylene) Materials for Spatial Profiling of the Chemical Reactivity of Intracellular Compartments. Advanced Materials, 2016, 28, 3749-3754.	21.0	18
130	A homoleptic, all-alkynyl-stabilized highly luminescent Au ₈ Ag ₈ cluster with a single crystal X-ray structure. Dalton Transactions, 2016, 45, 12772-12778.	3.3	18
131	Manganese atalyzed Redoxâ€Neutral Câ^'H Olefination of Ketones with Unactivated Alkenes. Angewandte Chemie, 2018, 130, 12247-12251.	2.0	18
132	Sensitized chemiluminescence reaction between hydrogen peroxide and periodate of different types of Mn-doped ZnS quantum dots. Science Bulletin, 2010, 55, 3479-3484.	1.7	17
133	Efficient 4,5-dihydro-1H-imidazol-5-one formation from amidines and ketones under transition-metal free conditions. Green Chemistry, 2015, 17, 209-213.	9.0	17
134	Reaction Mechanisms of CO2 Reduction to Formaldehyde Catalyzed by Hourglass Ru, Fe, and Os Complexes: A Density Functional Theory Study. Catalysts, 2017, 7, 5.	3.5	17
135	Theoretical study of the low-lying electronic excited states for molecular aggregates. Science China Chemistry, 2013, 56, 1258-1262.	8.2	16
136	Stereocontrolled Synthesis of Benzo[<i>k</i>]fluoranthenes—An Unexpected Isomerization Mediated by Rhodacyclopentadiene. Chemistry - A European Journal, 2014, 20, 16442-16447.	3.3	16
137	Hydrogen photogeneration catalyzed by a cobalt complex of a pentadentate aminopyridine-based ligand. New Journal of Chemistry, 2015, 39, 1734-1741.	2.8	16
138	Reversal and Amplification of the Enantioselectivity of Biocatalytic Desymmetrization toward Meso Heterocyclic Dicarboxamides Enabled by Rational Engineering of Amidase. ACS Catalysis, 2021, 11, 6900-6907.	11.2	16
139	Aggregation of Hexanuclear, Mixedâ€Valence Manganese Oxide Clusters Linked by Propionato Ligands To Form a Oneâ€Dimensional Polymer [Mn ₆ O ₂ (O ₂ CEt) ₁₀ (H ₂ O) ₄] <i><s European Journal of Inorganic Chemistry, 2008, 2008, 5274-5280.</s </i>	ub ^{2.0} <td>b>¹⁵/i>.</td>	b> ¹⁵ /i>.
140	Anomalous Property of Ag(BO ₂) ₂ Hyperhalogen: Does Spin–Orbit Coupling Matter?. ChemPhysChem, 2013, 14, 3303-3308.	2.1	15
141	Solvatochromic Fluorescence Emission of an Anthranol Derivative without Typical Donor–Acceptor Structure: An Experimental and Theoretical Study. Journal of Physical Chemistry C, 2015, 119, 2761-2769.	3.1	15
142	Mechanistic Dichotomy in the Activation of SAM by Radical SAM Enzymes: QM/MM Modeling Deciphers the Determinant. ACS Catalysis, 2020, 10, 13245-13250.	11.2	15
143	Synthesis, structure, and C–H bond activation reaction of an iron(IV) terminal imido complex bearing trifluoromethyl groups. Cell Reports Physical Science, 2021, 2, 100454.	5.6	15
144	Mechanism of Ruthenium-Catalyzed Alder Ene-Type Reaction:  A Theoretical Study. Organometallics, 2005, 24, 872-884.	2.3	14

#	Article	IF	CITATIONS
145	Poly(benzyl ether) dendrons without conventional gelation motifs as a new kind of effective organogelators. Science Bulletin, 2012, 57, 4289-4295.	1.7	14
146	A family of novel Mn3Ln4 clusters displaying single-molecule magnet behavior. Dalton Transactions, 2014, 43, 16737-16744.	3.3	14
147	DFT Methods to Study the Reaction Mechanism of Iridiumâ€Catalyzed Hydrogenation of Olefins: Which Functional Should be Chosen?. ChemPhysChem, 2016, 17, 119-127.	2.1	14
148	What Factors Control the Reactivity of Cobalt–Imido Complexes in C–H Bond Activation via Hydrogen Abstraction?. ACS Catalysis, 2017, 7, 285-292.	11.2	14
149	A Density Functional Theory Study on the Intramolecular Proton Transfer in the Enzyme Carbonic Anhydrase. Journal of Physical Chemistry A, 2003, 107, 4652-4660.	2.5	13
150	Plasmonic luminescent core–shell nanocomposites-enhanced chemiluminescence arising from the decomposition of peroxomonosulfite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 116, 355-360.	3.9	13
151	Formation of Gasâ€Phase Formate in Thermal Reactions of Carbon Dioxide with Diatomic Iron Hydride Anions. Angewandte Chemie, 2017, 129, 4251-4255.	2.0	13
152	Preparation of ibuprofen/lipid composite microparticles by supercritical fluid technique. Frontiers of Chemical Engineering in China, 2008, 2, 361-367.	0.6	12
153	Metal Chelation-Assisted Amine–Amine Electronic Coupling through the 4,4′-Positions of 2,2′-Bipyridine. Inorganic Chemistry, 2015, 54, 1272-1282.	4.0	12
154	Mechanistic Study and Ligand Design for the Formation of Zinc Formate Complexes from Zinc Hydride Complexes and Carbon Dioxide. Organometallics, 2015, 34, 121-126.	2.3	11
155	Formation of Hetero-binuclear Pt(II)-M(II) Complexes Based on (2-(1 <i>H</i> -Tetrazol-5-yl)phenyl)diphenylphosphine Oxide for Superior Phosphorescence of Monomers. Inorganic Chemistry, 2019, 58, 4253-4261.	4.0	11
156	Synthesis, crystal structures and magnetic properties of a family of manganese phosphonate clusters with diverse structures. CrystEngComm, 2015, 17, 8736-8745.	2.6	10
157	Synthesis of a new cationic non-conjugated polymer for discrimination of microbial pathogens. Polymer Chemistry, 2016, 7, 6699-6702.	3.9	10
158	Understanding the <i>Z</i> selectivity of the metal-free intermolecular aminoarylation of alkynes: a DFT study. Organic Chemistry Frontiers, 2019, 6, 125-133.	4.5	9
159	A new topology of hexanuclear [Mn ^{III} ₄ Ln ^{III} ₂] clusters: syntheses, structures, and magnetic properties. RSC Advances, 2016, 6, 12408-12413.	3.6	8
160	Mechanisms of the transfer hydroformylation catalyzed by rhodium, cobalt, and iridium complexes: Insights from density functional theory study. Journal of Organometallic Chemistry, 2017, 833, 71-79.	1.8	8
161	Origin of Nitric Oxide Reduction Activity in Flavo–Diiron NO Reductase: Key Roles of the Second Coordination Sphere. Angewandte Chemie, 2019, 131, 3835-3839.	2.0	8
162	A New Family of Homo- and Heterometallic Manganese Complexes at High Oxidation States Derived from the Oxidation of MnII with CeIV: Syntheses, Structures, and Magnetic Properties. European Journal of Inorganic Chemistry, 2011, 2011, 5043-5053.	2.0	7

#	Article	IF	CITATIONS
163	ROS self-scavenging polythiophene materials for cell imaging. Polymer Chemistry, 2015, 6, 8244-8247.	3.9	7
164	Synergistic Coordination and Hydrogen Bonding Interaction Modulate the Emission of Iridium Complex for Highly Sensitive Glutamine Imaging in Live Cells. Analytical Chemistry, 2016, 88, 10322-10327.	6.5	7
165	A density functional theory study on mechanism and substituent effects of a baseâ€free and catalystâ€free synthesis of functionalized dihydrobenzoxazoles. International Journal of Quantum Chemistry, 2019, 119, e25836.	2.0	7
166	CASPT2//CASSCF Study on the Photolysis Mechanism of 2,3-Diazabicyclo[2.1.1]hex-2-ene:  α Câ^'N versus β Câ^'C Cleavage. Journal of Organic Chemistry, 2006, 71, 9013-9022.	3.2	6
167	Activation of Methane Promoted by Adsorption of CO on Mo ₂ C ₂ ^{â^'} Cluster Anions. Angewandte Chemie, 2016, 128, 5854-5858.	2.0	6
168	Iron-catalyzed <i>N</i> -alkylation of aromatic amines via borrowing hydrogen strategy. Journal of Coordination Chemistry, 2021, 74, 877-884.	2.2	6
169	Manganese atalyzed Asymmetric Formal Hydroamination of Allylic Alcohols: A Remarkable Macrocyclic Ligand Effect. Angewandte Chemie, 2022, 134, .	2.0	6
170	Theoretical Study on the Photolysis Mechanism of 2,3-Diazabicyclo[2.2.2]oct-2-ene. Journal of the American Chemical Society, 2005, 127, 13190-13199.	13.7	5
171	Modeling $\ddot{I}f$ -Bond Activations by Nickel(O) Beyond Common Approximations: How Accurately Can We Describe Closed-Shell Oxidative Addition Reactions Mediated by Low-Valent Late 3d Transition Metal?. Journal of Chemical Theory and Computation, 2017, 13, 4841-4853.	5.3	5
172	Synthesis and characterization of vanadium(III) and vanadium(IV) polymers containing 3,5-pyrazoledicarboxylato. Journal of Coordination Chemistry, 2008, 61, 3556-3567.	2.2	4
173	A Novel Chemiluminescence Immunoassay Using Solidâ€Phase Antigen for Free 17 <i>β</i> â€Estradiol in Human Serum. Chinese Journal of Chemistry, 2011, 29, 2520-2524.	4.9	4
174	Copper(ii) facilitated decarboxylation for the construction of pyridyl–pyrazole skeletons. Inorganic Chemistry Frontiers, 2019, 6, 2359-2364.	6.0	4
175	Theoretical methods for excited state dynamics of molecules and molecular aggregates. Science China Chemistry, 2013, 56, 1271-1276.	8.2	3
176	Comparative computational study on C-C/C-N/C-Br bond formations in Rh(III)-catalyzed C-H functionalizations: Stepwise versus concerted mechanisms. Journal of Organometallic Chemistry, 2018, 864, 105-109.	1.8	3
177	Photoelectron Imaging Spectroscopy of ZrOâ^' Diatomic Anion. Chinese Journal of Chemical Physics, 2015, 28, 452-458.	1.3	1
178	A novel route to the synthesis of α,ï‰-diphenylalkanes. Journal of Chemical Research, 2017, 41, 473-474.	1.3	1
179	Bis(acetylacetonato)oxido(triphenylphosphine oxide)vanadium(IV). Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m159-m159.	0.2	1
180	Frontispiece: Stereocontrolled Synthesis of Benzo[k]fluoranthenes-An Unexpected Isomerization Mediated by Rhodacyclopentadiene. Chemistry - A European Journal, 2014, 20, n/a-n/a.	3.3	0

#	Article	IF	CITATIONS
181	Frontispiece: Fluorescent Dendritic Organogels Based on 2-(2′-Hydroxyphenyl)benzoxazole: Emission Enhancement and Multiple Stimuli-Responsive Properties. Chemistry - A European Journal, 2015, 21, n/a-n/a.	3.3	0
182	Hexanuclear and Tetranuclear Mn/Ln clusters using 2â€(hydroxymethyl)pyridine: Synthesis, structures and magnetic properties. Applied Organometallic Chemistry, 2017, 31, e3846.	3.5	0
183	Titelbild: Formation of Gasâ€Phase Formate in Thermal Reactions of Carbon Dioxide with Diatomic Iron Hydride Anions (Angew. Chem. 15/2017). Angewandte Chemie, 2017, 129, 4127-4127.	2.0	Ο