

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7412120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Impact of Cell Division and Cell Enlargement on the Evolution of Fruit Size in Pyrus pyrifolia. Annals of Botany, 2006, 98, 537-543.	2.9	88
2	Aroma characterization based on aromatic series analysis in table grapes. Scientific Reports, 2016, 6, 31116.	3.3	85
3	Characterization and Cloning of Grape Circular RNAs Identified the Cold Resistance-Related <i>Vv-circATS1</i> . Plant Physiology, 2019, 180, 966-985.	4.8	75
4	Selection of reference genes for miRNA qRT-PCR under abiotic stress in grapevine. Scientific Reports, 2018, 8, 4444.	3.3	66
5	Evolution of volatile compounds during the development of Muscat grape â€~Shine Muscat' (Vitis) Tj ETQq1 I	. 8. 28431	4 rgBT /Ove
6	Roles of gibberellins in increasing sink demand in Japanese pear fruit during rapid fruit growth. Plant Growth Regulation, 2007, 52, 161-172.	3.4	55
7	Pollen density on the stigma affects endogenous gibberellin metabolism, seed and fruit set, and fruit quality in Pyrus pyrifolia. Journal of Experimental Botany, 2010, 61, 4291-4302.	4.8	53
8	13C-photosynthate accumulation in Japanese pear fruit during the period of rapid fruit growth is limited by the sink strength of fruit rather than by the transport capacity of the pedicel. Journal of Experimental Botany, 2005, 56, 2713-2719.	4.8	52
9	Hormonal regulation of fruit set, parthenogenesis induction and fruit expansion in Japanese pear. Plant Growth Regulation, 2008, 55, 231-240.	3.4	40
10	The role of <i>VvMYBA2r</i> and <i>VvMYBA2w</i> alleles of the <i>MYBA2</i> locus in the regulation of anthocyanin biosynthesis for molecular breeding of grape (<i>Vitis</i> spp.) skin coloration. Plant Biotechnology Journal, 2021, 19, 1216-1239.	8.3	39
11	The Cytochrome P450 Monooxygenase Inventory of Grapevine (Vitis vinifera L.): Genome-Wide Identification, Evolutionary Characterization and Expression Analysis. Frontiers in Genetics, 2020, 11, 44.	2.3	35
12	Dormancy-Associated MADS-Box (DAM) Genes Influence Chilling Requirement of Sweet Cherries and Co-Regulate Flower Development with SOC1 Gene. International Journal of Molecular Sciences, 2020, 21, 921.	4.1	34
13	Characterization of the ABA Receptor VIPYL1 That Regulates Anthocyanin Accumulation in Grape Berry Skin. Frontiers in Plant Science, 2018, 9, 592.	3.6	32
14	MYB transcription factor family in sweet cherry (Prunus avium L.): genome-wide investigation, evolution, structure, characterization and expression patterns. BMC Plant Biology, 2022, 22, 2.	3.6	28
15	Genome-Wide Identification, Characterization, and Transcript Analysis of the TCP Transcription Factors in Vitis vinifera. Frontiers in Genetics, 2019, 10, 1276.	2.3	27
16	Plant growth regulators improve sweet cherry fruit quality without reducing endocarp growth. Scientia Horticulturae, 2013, 150, 73-79.	3.6	23
17	Root restriction affected anthocyanin composition and up-regulated the transcription of their biosynthetic genes during berry development in †Summer Black' grape. Acta Physiologiae Plantarum, 2013, 35, 2205-2217.	2.1	22
18	Combined Application of Bacteriophages and Carvacrol in the Control of Pseudomonas syringae pv. actinidiae Planktonic and Biofilm Forms. Microorganisms, 2020, 8, 837.	3.6	22

Jiefa Li

#	Article	IF	CITATIONS
19	Spur Characteristics, Fruit Growth, and Carbon Partitioning in Two Late-maturing Japanese Pear (Pyrus pyrifolia Nakai) Cultivars with Contrasting Fruit Size. Journal of the American Society for Horticultural Science, 2005, 130, 252-260.	1.0	22

20 Proteomic analysis of the effects of gibberellin on increased fruit sink strength in Asian pear (Pyrus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

21	SVP-like gene PavSVP potentially suppressing flowering with PavSEP, PavAP1, and PavJONITLESS in sweet cherries (Prunus avium L.). Plant Physiology and Biochemistry, 2021, 159, 277-284.	5.8	20
22	Comparative Metabolic Profiling of Grape Skin Tissue along Grapevine Berry Developmental Stages Reveals Systematic Influences of Root Restriction on Skin Metabolome. International Journal of Molecular Sciences, 2019, 20, 534.	4.1	19
23	Characterization of a Lytic Bacteriophage against Pseudomonas syringae pv. actinidiae and Its Endolysin. Viruses, 2021, 13, 631.	3.3	18
24	Comparative Analysis of miRNA Abundance Revealed the Function of Vvi-miR828 in Fruit Coloring in Root Restriction Cultivation Grapevine (Vitis vinifera L.). International Journal of Molecular Sciences, 2019, 20, 4058.	4.1	17
25	Proteomic analysis of pear (<i>Pyrus pyrifolia</i>) ripening process provides new evidence for the sugar/acid metabolism difference between core and mesocarp. Proteomics, 2016, 16, 3025-3041.	2.2	16
26	Coding of Non-coding RNA: Insights Into the Regulatory Functions of Pri-MicroRNA-Encoded Peptides in Plant Science, 2021, 12, 641351.	3.6	15
27	Hydrogen cyanamide improves endodormancy release and blooming associated with endogenous hormones in â€~Summit' sweet cherry trees. New Zealand Journal of Crop and Horticultural Science, 2017, 45, 14-28.	1.3	14
28	In-Depth Aroma and Sensory Profiling of Unfamiliar Table-Grape Cultivars. Molecules, 2018, 23, 1703.	3.8	14
29	Differential regulation of enzyme activities and physio-anatomical aspects of calcium nutrition in grapevine. Scientia Horticulturae, 2020, 272, 109423.	3.6	14
30	Grapevine ABA receptor VvPYL1 regulates root hair development in Transgenic Arabidopsis. Plant Physiology and Biochemistry, 2020, 149, 190-200.	5.8	14
31	Gibberellins and N-(2-chloro-4-pyridyl)-Nâ€2-phenylurea improve retention force and reduce water core in pre-mature fruit of Japanese pear cv. Housui. Plant Growth Regulation, 2009, 58, 25-34.	3.4	12
32	The Role of Strigolactones in the Regulation of Root System Architecture in Grapevine (Vitis vinifera) Tj ETQq0 0 0 8799.	rgBT /C 4.1	verlock 10 T 12
33	Exogenous Abscisic Acid Mediates Berry Quality Improvement by Altered Endogenous Plant Hormones Level in "Ruiduhongyu―Grapevine. Frontiers in Plant Science, 2021, 12, 739964.	3.6	8
34	Cold induced genes (CIGs) regulate flower development and dormancy in Prunus avium L. Plant Science, 2021, 313, 111061.	3.6	8
35	The MADS-box genes PaMADS3/4/5 co-regulate multi-pistil formation induced by high temperature in Prunus avium L Scientia Horticulturae, 2019, 256, 108593.	3.6	7
36	Small RNA Sequencing Analysis of miRNA Expression Reveals Novel Insihts into Root Formation under Root Restriction Cultivation in Grapevine (Vitis vinifera L.). International Journal of Molecular Sciences, 2020, 21, 3513.	4.1	7

Jiefa Li

#	Article	IF	CITATIONS
37	Comparative fungal diversity and dynamics in plant compartments at different developmental stages under root-zone restricted grapevines. BMC Microbiology, 2021, 21, 317.	3.3	7
38	Understanding calcium functionality by examining growth characteristics and structural aspects in calcium-deficient grapevine. Scientific Reports, 2022, 12, 3233.	3.3	7
39	MADS-Box Genes are Involved in Cultivar- and Temperature-Dependent Formation of Multi-pistil and Polycarpy in Prunus avium L Journal of Plant Growth Regulation, 2019, 38, 1017-1027.	5.1	6
40	VvMYB15 and VvWRKY40 Positively Co-regulated Anthocyanin Biosynthesis in Grape Berries in Response to Root Restriction. Frontiers in Plant Science, 2021, 12, 789002.	3.6	6
41	VvMYB114 mediated by miR828 negatively regulates trichome development of Arabidopsis. Plant Science, 2021, 309, 110936.	3.6	4
42	FRUITFULL is involved in double fruit formation at high temperature in sweet cherry. Environmental and Experimental Botany, 2022, 201, 104986.	4.2	3
43	The complete chloroplast genome sequence of <i>Vitis pseudoreticulata</i> . Mitochondrial DNA Part B: Resources, 2019, 4, 3630-3631.	0.4	2
44	Comparative Metabolic Profiling of Grape Pulp during the Growth Process Reveals Systematic Influences under Root Restriction. Metabolites, 2021, 11, 377.	2.9	1