Xiqun Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7411920/publications.pdf

Version: 2024-02-01

206 papers 11,482 citations

18436 62 h-index 98 g-index

213 all docs

213 docs citations

213 times ranked

14084 citing authors

#	Article	IF	CITATIONS
1	Synthesis and characterization of chitosan–poly(acrylic acid) nanoparticles. Biomaterials, 2002, 23, 3193-3201.	5.7	464
2	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.	4.2	336
3	Core–Shell MnSe@Bi ₂ Se ₃ Fabricated via a Cation Exchange Method as Novel Nanotheranostics for Multimodal Imaging and Synergistic Thermoradiotherapy. Advanced Materials, 2015, 27, 6110-6117.	11.1	330
4	Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo. Nature Communications, 2015, 6, 5834.	5.8	308
5	Thermo and pH Dualâ€Responsive Nanoparticles for Antiâ€Cancer Drug Delivery. Advanced Materials, 2007, 19, 2988-2992.	11.1	254
6	Preparation and drug release behaviors of nimodipine-loaded poly(caprolactone)–poly(ethylene) Tj ETQq0 0 0 r	gBT/Overl	ock 10 Tf 50
7	Covalently Combining Carbon Nanotubes with Anticancer Agent: Preparation and Antitumor Activity. ACS Nano, 2009, 3, 2740-2750.	7.3	243
8	Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. Biomaterials, 2013, 34, 8314-8322.	5.7	195
9	Doxorubicin delivery to 3D multicellular spheroids and tumors based on boronic acid-rich chitosan nanoparticles. Biomaterials, 2013, 34, 4667-4679.	5.7	195
10	Preparation, characterization, and drug release behaviors of drug nimodipineâ€loaded poly(εâ€caprolactone)â€poly(ethylene oxide)â€poly(εâ€caprolactone) amphiphilic triblock copolymer micelles. Journal of Pharmaceutical Sciences, 2002, 91, 1463-1473.	1.6	183
11	Multifunctional Nanocarriers for Cell Imaging, Drug Delivery, and Near-IR Photothermal Therapy. Langmuir, 2010, 26, 5428-5434.	1.6	174
12	Resveratrol-loaded polymeric micelles protect cells from $A\hat{l}^2$ -induced oxidative stress. International Journal of Pharmaceutics, 2009, 375, 89-96.	2.6	173
13	Camptothecin derivative-loaded poly(caprolactone-co-lactide)-b-PEG-b-poly(caprolactone-co-lactide) nanoparticles and their biodistribution in mice. Journal of Controlled Release, 2004, 96, 135-148.	4.8	170
14	Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery. Journal of Controlled Release, 2015, 205, 206-217.	4.8	170
15	Photoacoustic Imaging and Photothermal Therapy of Semiconducting Polymer Nanoparticles: Signal Amplification and Second Nearâ€Infrared Construction. Small, 2021, 17, e2004723.	5.2	168
16	Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia. Nature Biomedical Engineering, 2017, 1 , .	11.6	167
17	Core-Template-Free Strategy for Preparing Hollow Nanospheres. Advanced Materials, 2004, 16, 933-937.	11.1	151
18	Paclitaxel-loaded poly(N-vinylpyrrolidone)-b-poly($\hat{l}\mu$ -caprolactone) nanoparticles: Preparation and antitumor activity in vivo. Journal of Controlled Release, 2010, 142, 438-446.	4.8	150

#	Article	lF	CITATIONS
19	Light-Activated Hypoxia-Sensitive Covalent Organic Framework for Tandem-Responsive Drug Delivery. Nano Letters, 2021, 21, 3218-3224.	4.5	148
20	H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo. Nature Communications, 2020, 11, 446.	5.8	141
21	10-Hydroxycamptothecin loaded nanoparticles: Preparation and antitumor activity in mice. Journal of Controlled Release, 2007, 119, 153-162.	4.8	136
22	Recent Advances in Nanostrategies Capable of Overcoming Biological Barriers for Tumor Management. Advanced Materials, 2020, 32, e1904337.	11.1	130
23	Degradation Behavior of Poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone) Micelles in Aqueous Solution. Biomacromolecules, 2004, 5, 1756-1762.	2.6	125
24	Cellular uptake, antitumor response and tumor penetration of cisplatin-loaded milk protein nanoparticles. Biomaterials, 2013, 34, 1372-1382.	5.7	123
25	Hollow Chitosan/Poly(acrylic acid) Nanospheres as Drug Carriers. Biomacromolecules, 2007, 8, 1069-1076.	2.6	122
26	Tracking Cancer Metastasis Inâ€Vivo by Using an Iridiumâ€Based Hypoxiaâ€Activated Optical Oxygen Nanosensor. Angewandte Chemie - International Edition, 2015, 54, 8094-8099.	7.2	121
27	Superior antitumor efficiency of cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 726-734.	2.0	115
28	The antitumor effect of novel docetaxel-loaded thermosensitive micelles. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 527-534.	2.0	111
29	The effect of hydrophilic chain length and iRGD on drug delivery from poly(ε-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials, 2011, 32, 9525-9535.	5.7	110
30	Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles. Biomaterials, 2013, 34, 7191-7203.	5.7	110
31	Translatable High Drug Loading Drug Delivery Systems Based on Biocompatible Polymer Nanocarriers. Biomacromolecules, 2018, 19, 1732-1745.	2.6	102
32	Conjugated polyelectrolyte–cisplatin complex nanoparticles for simultaneous in vivo imaging and drug tracking. Nanoscale, 2011, 3, 1997.	2.8	101
33	Mitochondrion-specific dendritic lipopeptide liposomes for targeted sub-cellular delivery. Nature Communications, 2021, 12, 2390.	5.8	101
34	Nanospheres-Incorporated Implantable Hydrogel as a Trans-Tissue Drug Delivery System. ACS Nano, 2011, 5, 2520-2534.	7.3	100
35	Phenylboronic Acid-Mediated Tumor Targeting of Chitosan Nanoparticles. Theranostics, 2016, 6, 1378-1392.	4.6	98
36	Facile Preparation of Paclitaxel Loaded Silk Fibroin Nanoparticles for Enhanced Antitumor Efficacy by Locoregional Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2013, 5, 12638-12645.	4.0	96

#	Article	IF	Citations
37	Polymer-Monomer Pairs as a Reaction System for the Synthesis of Magnetic Fe3O4-Polymer Hybrid Hollow Nanospheres. Angewandte Chemie - International Edition, 2004, 43, 6369-6372.	7.2	95
38	Delivery of platinum(IV) drug to subcutaneous tumor and lung metastasis using bradykinin-potentiating peptide-decorated chitosan nanoparticles. Biomaterials, 2014, 35, 6439-6453.	5.7	93
39	Bioreducible heparin-based nanogel drug delivery system. Biomaterials, 2015, 39, 260-268.	5.7	93
40	Synthesis and Magnetic Properties of Biocompatible Hybrid Hollow Spheres. Biomacromolecules, 2006, 7, 1766-1772.	2.6	92
41	Paclitaxel/Tetrandrine Coloaded Nanoparticles Effectively Promote the Apoptosis of Gastric Cancer Cells Based on "Oxidation Therapy― Molecular Pharmaceutics, 2012, 9, 222-229.	2.3	85
42	Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075.	4.2	85
43	Synthesis of Paclitaxelâ€Conjugated βâ€Cyclodextrin Polyrotaxane and Its Antitumor Activity. Angewandte Chemie - International Edition, 2013, 52, 7272-7277.	7.2	83
44	Oligo(ethylene glycol)-Based Thermosensitive Dendrimers and Their Tumor Accumulation and Penetration. Journal of the American Chemical Society, 2014, 136, 3145-3155.	6.6	83
45	Preparation and evaluation of PEG–PCL nanoparticles for local tetradrine delivery. International Journal of Pharmaceutics, 2009, 379, 158-166.	2.6	82
46	Hollow Coreâ^'Porous Shell Structure Poly(acrylic acid) Nanogels with a Superhigh Capacity of Drug Loading. ACS Applied Materials & Samp; Interfaces, 2010, 2, 3532-3538.	4.0	82
47	Cisplatin-loaded gelatin-poly(acrylic acid) nanoparticles: Synthesis, antitumor efficiency in vivo and penetration in tumors. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 142-149.	2.0	79
48	Combined near-IR photothermal therapy and chemotherapy using gold-nanorod/chitosan hybrid nanospheres to enhance the antitumor effect. Biomaterials Science, 2013, 1, 285-293.	2.6	79
49	Synthesis of Hydroxypropylcellulose-poly(acrylic acid) Particles with Semi-Interpenetrating Polymer Network Structure. Biomacromolecules, 2008, 9, 2609-2614.	2.6	77
50	pH-Induced Self-Assembly and Capsules of Sodium Alginate. Biomacromolecules, 2005, 6, 2189-2196.	2.6	76
51	Novel thermosensitive polymeric micelles for docetaxel delivery. Journal of Biomedical Materials Research - Part A, 2007, 81A, 847-857.	2.1	76
52	The combined effects of size and surface chemistry on the accumulation of boronic acid-rich protein nanoparticles in tumors. Biomaterials, 2014, 35, 866-878.	5.7	75
53	The development of phosphorescent probes for <i>in vitro</i> and <i>in vivo</i> bioimaging. Biomaterials Science, 2021, 9, 285-300.	2.6	74
54	Enhanced antitumor efficacy, biodistribution and penetration of docetaxel-loaded biodegradable nanoparticles. International Journal of Pharmaceutics, 2012, 430, 350-358.	2.6	73

#	Article	IF	Citations
55	Preparation, characterization, and drug release behaviors of drug-loaded ?-caprolactone/L-lactide copolymer nanoparticles. Journal of Applied Polymer Science, 2000, 75, 874-882.	1.3	70
56	Synthesis and stimuli-responsive properties of chitosan/poly(acrylic acid) hollow nanospheres. Polymer, 2005, 46, 12703-12710.	1.8	70
57	Polymer/silica hybrid hollow nanospheres with pH-sensitive drug release in physiological and intracellular environments. Chemical Communications, 2009, , 2718.	2.2	68
58	Enhancing Penetration Ability of Semiconducting Polymer Nanoparticles for Sonodynamic Therapy of Large Solid Tumor. Advanced Science, 2022, 9, e2104125.	5.6	68
59	Water-Soluble Chitosan-Quantum Dot Hybrid Nanospheres toward Bioimaging and Biolabeling. ACS Applied Materials & Dividing and Biolabeling.	4.0	67
60	Synthesis and drug delivery of novel amphiphilic block copolymers containing hydrophobic dehydroabietic moiety. Journal of Materials Chemistry B, 2013, 1, 2324.	2.9	67
61	Dualâ€Functional Alginic Acid Hybrid Nanospheres for Cell Imaging and Drug Delivery. Small, 2009, 5, 709-717.	5.2	65
62	Application of nanomaterials in cancer immunotherapy. Materials Today Chemistry, 2018, 7, 53-64.	1.7	64
63	Formation of positively charged poly(butyl cyanoacrylate) nanoparticles stabilized with chitosan. Colloid and Polymer Science, 2000, 278, 285-292.	1.0	63
64	Reversible Surface Switching of Nanogel Triggered by External Stimuli. Angewandte Chemie - International Edition, 2007, 46, 7104-7107.	7.2	63
65	Antibody and antibody fragments for cancer immunotherapy. Journal of Controlled Release, 2020, 328, 395-406.	4.8	63
66	Stimuli-responsive cyclodextrin-based nanoplatforms for cancer treatment and theranostics. Materials Horizons, 2019, 6, 846-870.	6.4	61
67	In situ formation of chitosan–gold hybrid hydrogel and its application for drug delivery. Colloids and Surfaces B: Biointerfaces, 2012, 97, 132-137.	2.5	59
68	Delivery of doxorubicin in vitro and in vivo using bio-reductive cellulose nanogels. Biomaterials Science, 2014, 2, 220-232.	2.6	59
69	Degradation and Degradation-Induced Re-Assembly of PVP-PCL Micelles. Biomacromolecules, 2010, 11, 481-488.	2.6	55
70	Bypassing the Immunosuppression of Myeloidâ€Derived Suppressor Cells by Reversing Tumor Hypoxia Using a Plateletâ€Inspired Platform. Advanced Functional Materials, 2020, 30, 2000189.	7.8	54
71	Tumor Accumulation, Penetration, and Antitumor Response of Cisplatin-Loaded Gelatin/Poly(acrylic) Tj ETQq1 1	. 0.784314 4.0	rgBT Overlo
72	Enhancing tumor penetration and targeting using size-minimized and zwitterionic nanomedicines. Journal of Controlled Release, 2016, 237, 115-124.	4.8	52

#	Article	IF	Citations
73	Eradication of unresectable liver metastasis through induction of tumour specific energy depletion. Nature Communications, 2019, 10, 3051.	5.8	52
74	Effect of Chain End Chemistry on Surface Molecular Motion of Polystyrene Films. Macromolecules, 1998, 31, 5148-5149.	2.2	48
75	Direct Facile Approach to the Fabrication of Chitosanâ^'Gold Hybrid Nanospheres. Langmuir, 2008, 24, 3459-3464.	1.6	48
76	Hybrid nanoparticle composites applied to photodynamic therapy: strategies and applications. Journal of Materials Chemistry B, 2020, 8, 4726-4737.	2.9	48
77	Alginic Acid Nanoparticles Prepared through Counterion Complexation Method as a Drug Delivery System. ACS Applied Materials & System.	4.0	47
78	Redox Responsive Hyaluronic Acid Nanogels for Treating RHAMM (CD168) Over-expressive Cancer, both Primary and Metastatic Tumors. Theranostics, 2017, 7, 1719-1734.	4.6	47
79	Tumor Microenvironment-Regulated and Reported Nanoparticles for Overcoming the Self-Confinement of Multiple Photodynamic Therapy. Nano Letters, 2020, 20, 6526-6534.	4.5	46
80	Size- and pathotropism-driven targeting and washout-resistant effects of boronic acid-rich protein nanoparticles for liver cancer regression. Journal of Controlled Release, 2013, 168, 1-9.	4.8	45
81	Entrapping multifunctional dendritic nanoparticles into a hydrogel for local therapeutic delivery and synergetic immunochemotherapy. Nano Research, 2018, 11, 6062-6073.	5.8	45
82	Phenylboronic Acid Modification Augments the Lysosome Escape and Antitumor Efficacy of a Cylindrical Polymer Brush-Based Prodrug. Journal of the American Chemical Society, 2021, 143, 20927-20938.	6.6	45
83	Entering and Lighting Up Nuclei Using Hollow Chitosan–Gold Hybrid Nanospheres. Advanced Materials, 2009, 21, 3639-3643.	11.1	44
84	Preparation, drug release and cellular uptake of doxorubicin-loaded dextran-b-poly(É)-caprolactone) nanoparticles. Carbohydrate Polymers, 2013, 93, 430-437.	5.1	43
85	Responsive boron biomaterials and their biomedical applications. Science China Chemistry, 2020, 63, 648-664.	4.2	43
86	Synthesis of Alginic Acidâ^'Poly[2-(diethylamino)ethyl methacrylate] Monodispersed Nanoparticles by a Polymerâ^'Monomer Pair Reaction System. Biomacromolecules, 2007, 8, 843-850.	2.6	42
87	Cell-penetrating hollow spheres based on milk protein. Chemical Communications, 2010, 46, 7566.	2.2	42
88	Synthesis and Antitumoral Activity of Gelatin/Polyoxometalate Hybrid Nanoparticles. Macromolecular Bioscience, 2011, 11, 839-847.	2.1	39
89	Intelligently Targeted Drug Delivery and Enhanced Antitumor Effect by Gelatinase-Responsive Nanoparticles. PLoS ONE, 2013, 8, e69643.	1.1	39
90	A Facile Strategy for Constructing Boronâ€Rich Polymer Nanoparticles via a Boronic Acidâ€Related Reaction. Macromolecular Rapid Communications, 2011, 32, 534-539.	2.0	38

#	Article	IF	Citations
91	Gelatinase-stimuli strategy enhances the tumor delivery and therapeutic efficacy of docetaxel-loaded poly(ethylene glycol)-poly(ε-caprolactone) nanoparticles. International Journal of Nanomedicine, 2012, 7, 281.	3.3	38
92	Supramolecular Amphiphilic Polymer-Based Micelles with Seven-Armed Polyoxazoline Coating for Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5768-5777.	4.0	38
93	Doxorubicin-loaded poly(butylcyanoacrylate) nanoparticles produced by emulsifier-free emulsion polymerization. Journal of Applied Polymer Science, 2000, 78, 517-526.	1.3	37
94	Near-Infrared Emitting Gold Cluster–Poly(acrylic acid) Hybrid Nanogels. ACS Macro Letters, 2014, 3, 74-76.	2.3	37
95	Anomalous magnetic properties in Co3O4 nanoparticles covered with polymer decomposition residues. Journal of Applied Physics, 2004, 95, 7420-7422.	1.1	36
96	Targeting and microenvironment-improving of phenylboronic acid-decorated soy protein nanoparticles with different sizes to tumor. Theranostics, 2019, 9, 7417-7430.	4.6	36
97	Second Near-Infrared Aggregation-Induced Emission Fluorophores with Phenothiazine Derivatives as the Donor and 6,7-Diphenyl-[1,2,5]Thiadiazolo[3,4-g]Quinoxaline as the Acceptor for In Vivo Imaging. ACS Applied Materials & Diterfaces, 2020, 12, 20281-20286.	4.0	36
98	Fluorescent Micelles Based on Star Amphiphilic Copolymer with a Porphyrin Core for Bioimaging and Drug Delivery. Macromolecular Bioscience, 2012, 12, 83-92.	2.1	35
99	Ultra-high relaxivity iron oxide nanoparticles confined in polymer nanospheres for tumor MR imaging. Journal of Materials Chemistry B, 2015, 3, 5702-5710.	2.9	35
100	Platinum-Incorporating Poly(<i>N</i> -vinylpyrrolidone)-poly(aspartic acid) Pseudoblock Copolymer Nanoparticles for Drug Delivery. Biomacromolecules, 2015, 16, 2059-2071.	2.6	35
101	Improving Quantum Yield of a NIRâ€I Dye by Phenylazo Group. Advanced Healthcare Materials, 2020, 9, e1901470.	3.9	34
102	Non-enzymatic and enzymatic degradation of poly(ethylene glycol)-b-poly(É>-caprolactone) diblock copolymer micelles in aqueous solution. Polymer, 2008, 49, 5513-5519.	1.8	33
103	Drug-loaded pseudo-block copolymer micelles with a multi-armed star polymer as the micellar exterior. Nanoscale, 2015, 7, 12572-12580.	2.8	33
104	Shape Effects of Cylindrical versus Spherical Unimolecular Polymer Nanomaterials on in Vitro and in Vivo Behaviors. Research, 2019, 2019, 2391486.	2.8	33
105	Surface-Potential-Regulated Transmembrane and Cytotoxicity of Chitosan/Gold Hybrid Nanospheres. ACS Applied Materials & Diterfaces, 2010, 2, 1456-1465.	4.0	32
106	Nanoscaled boron-containing delivery systems and therapeutic agents for cancer treatment. Nanomedicine, 2015, 10, 1149-1163.	1.7	31
107	Synthesis and biological evaluation of bis and monocarbonate prodrugs of 10-hydroxycamptothecins. Bioorganic and Medicinal Chemistry, 2004, 12, 4003-4008.	1.4	30
108	The effects of poly(zwitterions)s versus poly(ethylene glycol) surface coatings on the biodistribution of protein nanoparticles. Biomaterials Science, 2016, 4, 1351-1360.	2.6	30

#	Article	IF	CITATIONS
109	The Sustainability of Energy Conversion Inhibition for Tumor Ferroptosis Therapy and Chemotherapy. Small, 2021, 17, e2102695.	5.2	30
110	Microstructure Formation and Property of Chitosan-Poly(acrylic acid) Nanoparticles Prepared by Macromolecular Complex. Macromolecular Bioscience, 2005, 5, 993-1000.	2.1	29
111	Emerging Designs of Aggregation-Induced Emission Agents for Enhanced Phototherapy Applications. CCS Chemistry, 2022, 4, 401-419.	4.6	28
112	Construction of a Biomimetic Zwitterionic Interface for Monitoring Cell Proliferation and Apoptosis. Langmuir, 2005, 21, 8394-8399.	1.6	27
113	Cellular entry fashion of hollow milk protein spheres. Soft Matter, 2011, 7, 11526.	1.2	27
114	Multifold enhanced T2 relaxation of ZnFe2O4 nanoparticles by jamming them inside chitosan nanospheres. Journal of Materials Chemistry, 2012, 22, 5684.	6.7	27
115	Hollow chitosan–silica nanospheres for doxorubicin delivery to cancer cells with enhanced antitumor effect in vivo. Journal of Materials Chemistry, 2011, 21, 3147.	6.7	26
116	Comparative studies of salinomycin-loaded nanoparticles prepared by nanoprecipitation and single emulsion method. Nanoscale Research Letters, 2014, 9, 351.	3.1	26
117	Phenothiazine versus Phenoxazine: Structural Effects on the Photophysical Properties of NIR-II AIE Fluorophores. ACS Applied Materials & Samp; Interfaces, 2020, 12, 43466-43473.	4.0	26
118	Effect of chain end group on surface glass transition temperature of thin polymer film. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 281, 363-367.	0.9	25
119	Ferroelectric Polymer Nanotubes with Large Dielectric Constants for Potential Allâ€Organic Electronic Devices. Macromolecular Rapid Communications, 2008, 29, 724-728.	2.0	25
120	Synthesis of β-cyclodextrin modified chitosan–poly(acrylic acid) nanoparticles and use as drug carriers. Carbohydrate Polymers, 2012, 90, 361-369.	5.1	24
121	Enhancement of radiotherapy efficacy by miR-200c-loaded gelatinase-stimuli PEG-Pep-PCL nanoparticles in gastric cancer cells. International Journal of Nanomedicine, 2014, 9, 2345.	3.3	24
122	Nitroxide-mediated radical polymerization of 4-vinylpyridine and its application on modification of silicon substrate. Journal of Applied Polymer Science, 2002, 86, 2687-2692.	1.3	23
123	Reversion of pH-Induced Physiological Drug Resistance: A Novel Function of Copolymeric Nanoparticles. PLoS ONE, 2011, 6, e24172.	1.1	23
124	A tumor-penetrating recombinant protein anti-EGFR-iRGD enhance efficacy of paclitaxel in 3D multicellular spheroids and gastric cancer in vivo. European Journal of Pharmaceutical Sciences, 2015, 77, 60-72.	1.9	23
125	Development of mesoporous silica-based nanoprobes for optical bioimaging applications. Biomaterials Science, 2021, 9, 3603-3620.	2.6	23
126	Synthesis and luminescence of CePO4and CePO4:Tb hollow and core–shell microspheres composed of single-crystal nanorods. Nanotechnology, 2007, 18, 415602.	1.3	21

#	Article	IF	Citations
127	Synthesis and Self-Assembly of a Nanoscaled Multiarm Polymer Terminated by \hat{l}^2 -Cyclodextrin. ACS Macro Letters, 2013, 2, 82-85.	2.3	21
128	Dendrimer-based nanoparticles in cancer chemotherapy and gene therapy. Science China Materials, 2018, 61, 1404-1419.	3.5	21
129	Magnetic anisotropy in carbon encapsulated Co/CoO "lines―with large exchange bias. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 307, 69-75.	0.9	20
130	Thermo and pH dual-responsive drug-linked pseudo-polypeptide micelles with a comb-shaped polymer as a micellar exterior. Polymer Chemistry, 2017, 8, 6886-6894.	1.9	20
131	Nanoscale vesicles assembled from non-planar cyclic molecules for efficient cell penetration. Biomaterials Science, 2019, 7, 2552-2558.	2.6	20
132	An oxygen-sensitive probe and a hydrogel for optical imaging and photodynamic antimicrobial chemotherapy of chronic wounds. Biomaterials Science, 2022, 10, 2054-2061.	2.6	20
133	Synthesis and characterization of novel soluble alternating copoly(phenylene vinylene) derivative for light-emitting electrochemical cell. Journal of Applied Polymer Science, 2003, 88, 1350-1356.	1.3	19
134	Phenylboronic acid-incorporated elastin-like polypeptide nanoparticle drug delivery systems. Polymer Chemistry, 2017, 8, 2105-2114.	1.9	19
135	Responsive hyaluronic acid-gold cluster hybrid nanogel theranostic systems. Biomaterials Science, 2021, 9, 1363-1373.	2.6	19
136	NIR-II Fluorophore with Dithienylethene as an Electron Donor for Fluorescence/Photoacoustic Dual-Model Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 2021, 13, 54830-54839.	4.0	19
137	Chitosan Surface-Modified Hydroxycamptothecin Loaded Nanoparticles with Enhanced Transport Across Caco-2 Cell Monolayer. Journal of Nanoscience and Nanotechnology, 2006, 6, 2912-2920.	0.9	18
138	In vitro and in vivo Antitumor Activity of Doxorubicin‣oaded Alginicâ€Acidâ€Based Nanoparticles. Macromolecular Bioscience, 2012, 12, 1326-1335.	2.1	18
139	Synthesis of <i>β</i> yclodextrinâ€[60]fullerene Conjugate and Its DNA Cleavage Performance. Chinese Journal of Chemistry, 2014, 32, 78-84.	2.6	18
140	Tracking Cancer Metastasis Inâ€Vivo by Using an Iridiumâ€Based Hypoxiaâ€Activated Optical Oxygen Nanosensor. Angewandte Chemie, 2015, 127, 8212-8217.	1.6	17
141	Synthesis and biological properties of water-soluble polyphenylthiophene brushes with poly(ethylene) Tj ETQq1 🛚	1 0 ₁ 78431	4 rgBT /Over
142	Carbamoylmannose enhances the tumor targeting ability of supramolecular nanoparticles formed through host–guest complexation of a pair of homopolymers. Journal of Materials Chemistry B, 2017, 5, 834-848.	2.9	17
143	Length effects of cylindrical polymer brushes on their <i>in vitro</i> and <i>in vivo</i> properties. Biomaterials Science, 2019, 7, 5124-5131.	2.6	17
144	Polymerâ€based activatable optical probes for tumor fluorescence and photoacoustic imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1593.	3.3	17

#	Article	IF	CITATIONS
145	Surface Functionalization of Polyethylene for Magnetic Resonance Signal-Enhancing Coating Materials. Chemistry of Materials, 2002, 14, 1914-1920.	3.2	16
146	Chemiluminescent Nanomicelles for Imaging Hydrogen Peroxide and Self-Therapy in Photodynamic Therapy. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-9.	3.0	16
147	Smart conjugated polymer nanocarrier for healthy weight loss by negative feedback regulation of lipase activity. Nanoscale, 2016, 8, 3368-3375.	2.8	16
148	Synthesis and Biological Properties of Porphyrin-Containing Polymeric Micelles with Different Sizes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 5794-5803.	4.0	16
149	The in vitro and in vivo properties of ringlike polymer brushes. Nano Today, 2021, 41, 101293.	6.2	16
150	Microemulsion polymerization of siloxane with nonionic surfactants as emulsifiers. Journal of Applied Polymer Science, 2003, 89, 3587-3593.	1.3	15
151	Effects of Methyl jasmonate with indole-3-acetic acid and 6-benzylaminopurine on the secondary metabolism of cultured Onosma paniculatum cells. In Vitro Cellular and Developmental Biology - Plant, 2004, 40, 581-585.	0.9	14
152	Fabrication and Characterization of Gd-DTPA-Loaded Chitosan-Poly(Acrylic Acid) Nanoparticles for Magnetic Resonance Imaging. Macromolecular Bioscience, 2015, 15, 1105-1114.	2.1	14
153	Modification of α-Cyclodextrin Polyrotaxanes by ATRP for Conjugating Drug and Prolonging Blood Circulation. ACS Biomaterials Science and Engineering, 2018, 4, 1963-1968.	2.6	14
154	Target-Amplified Drug Delivery of Polymer Micelles Bearing Staudinger Ligation. ACS Applied Materials & Light Representation (2019, 11, 32697-32705).	4.0	14
155	Synthesis of cobalt disulfide nanoparticles in polymer matrix. Materials Letters, 2003, 57, 2606-2611.	1.3	13
156	NIR-II Dye-Labeled Cylindrical Polymer Brushes for in Vivo Imaging. ACS Macro Letters, 2019, 8, 1623-1628.	2.3	13
157	Effect of chain end group hydrophobicity onsurface aggregation structure of poly(styrene-block-4-vinylpyridine) symmetric diblock copolymer films. Polymer, 1998, 39, 2615-2620.	1.8	12
158	Synthesis of hydroxyl-terminated copolymer of styrene and 4-vinylpyridine via nitroxide-mediated living radical polymerization. Journal of Applied Polymer Science, 2004, 91, 1842-1847.	1.3	12
159	Comparison of Gd [DTPA-bis (2-aminoethoxy) ethane] polymeric contrast agent with gadodiamide injection for interstitial MR lymphography: Experimental study with rabbits. Journal of Magnetic Resonance Imaging, 2005, 22, 361-367.	1.9	12
160	Physical Stability and Lyophilization of Poly(Îμ-caprolactone) Micelles. Journal of Nanoscience and Nanotechnology, 2006, 6, 3032-3039.	0.9	12
161	Superior antimetastatic effect of pemetrexed-loaded gelatinase-responsive nanoparticles in a mouse metastasis model. Anti-Cancer Drugs, 2012, 23, 1078-1088.	0.7	12
162	Synthesis of drug-crosslinked polymer nanoparticles. Polymer Chemistry, 2015, 6, 1703-1713.	1.9	12

#	Article	IF	Citations
163	Modulating Tumor Extracellular Matrix by Simultaneous Inhibition of Two Cancer Cell Receptors. Advanced Materials, 2022, 34, e2109376.	11.1	12
164	Synthesis, characterization, and electro-optical properties of a soluble conjugated polymer containing an oxadiazole unit in the main chain. Journal of Applied Polymer Science, 2003, 89, 2618-2623.	1.3	11
165	Lipophilic carbon nanotubes and their phase-separation in SBS. Polymer Testing, 2011, 30, 260-270.	2.3	10
166	Fluorination and Betaine Modification Augment the Blood–Brain Barrierâ€Crossing Ability of Cylindrical Polymer Brushes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
167	Relationships between lateral force and viscoelastic properties for amorphous polymer films based on lateral force microscopy. Polymer Bulletin, 1997, 39, 369-376.	1.7	9
168	Novel Magnetic Resonance Signal Enhancing Coating Material. Advanced Materials, 2001, 13, 490-493.	11.1	9
169	Nonspherical polysaccharide vesicles and their shape and volume regulation via osmotically sensitive channels. Soft Matter, 2011, 7, 5519.	1.2	9
170	Spontaneous Formation of Giant Polymer Vesicles through a Nucleation and Growth Pathway. Chemistry - an Asian Journal, 2012, 7, 1875-1880.	1.7	9
171	Synthesis, Cellular Uptake, and Biodistribution of Wheyâ€Rich Nanoparticles. Macromolecular Bioscience, 2014, 14, 1149-1159.	2.1	9
172	Cisplatinâ€Rich Polyoxazoline–Poly(aspartic acid) Supramolecular Nanoparticles. Macromolecular Bioscience, 2017, 17, 1700206.	2.1	9
173	Dendritic phospholipid-based drug delivery systems. Biomaterials Science, 2018, 6, 774-778.	2.6	8
174	Multifusion-induced wall-super-thick giant multilamellar vesicles. Chemical Communications, 2012, 48, 7079.	2.2	7
175	Cascade Downregulation of the HER Family by a Dual‶argeted Recombinant Protein–Drug Conjugate to Inhibit Tumor Growth and Metastasis. Advanced Materials, 2022, 34, e2201558.	11.1	7
176	Preparation of polydimethylsiloxane nanolatices by emulsion polymerization in a water-aminoethanol system. Journal of Applied Polymer Science, 2005, 98, 347-352.	1.3	6
177	Galactosylated α,β-poly[(2-hydroxyethyl)-L-aspartamide]-bound doxorubicin. Anti-Cancer Drugs, 2011, 22, 136-147.	0.7	6
178	Facile Optimization and Evaluation of PEG–PCL Block Copolymeric Nanoparticles for Anticancer Drug Delivery Using Copolymer Hybrids and Histoculture Drug Response Assays. Journal of Biomedical Nanotechnology, 2018, 14, 321-330.	0.5	6
179	Nanoscale Crystalline Sheets and Vesicles Assembled from Nonplanar Cyclic <i>ii i> -Conjugated Molecules. Research, 2019, 2019, 1953926.</i>	2.8	6
180	An Orthogonal Protection Strategy for Synthesizing Scaffold-Modifiable Dendrons and Their Application in Drug Delivery. ACS Central Science, 2022, 8, 258-267.	5.3	6

#	Article	IF	Citations
181	Preparation of Gd3+-containing polymer complex as a novel magnetic resonance signal-enhancing coating material. Journal of Materials Science: Materials in Medicine, 2003, 14, 283-286.	1.7	5
182	Polymeric gadolinium chelate–containing magnetic resonance signal-enhancing coating materials: Synthesis, characterization, and properties. Journal of Applied Polymer Science, 2003, 87, 1358-1364.	1.3	5
183	Synthesis of novel gelatin/poly(acrylic acid) nanorods via the self-assembly of nanospheres. Science China Chemistry, 2011, 54, 392-396.	4.2	5
184	A Dendronâ€Based Fluorescence Turnâ€On Probe for Tumor Detection. Chemistry - A European Journal, 2020, 26, 13022-13030.	1.7	5
185	Biologically active <i>Camellia oleifera</i> protein nanoparticles for improving the tumor microenvironment and drug delivery. Biomaterials Science, 2020, 8, 3907-3915.	2.6	5
186	Semiconductor Polymer with Strong NIR-II Absorption for Photoacoustic Imaging and Photothermal Therapy. ACS Applied Bio Materials, 2022, , .	2.3	5
187	End-grafting copolymers of styrene and 4-vinylpyridine on an interacting solid surface. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 1332-1343.	2.4	4
188	Synthesis of two-end-functionalized copolymer of styrene and methyl methacrylate via living radical polymerization. Journal of Applied Polymer Science, 2006, 102, 3118-3122.	1.3	4
189	Oxygen-Sensing Probes and Bandage for Optical Detection of Inflammation. ACS Applied Bio Materials, 2019, 2, 5110-5117.	2.3	4
190	Self-Assembly of Crystalline Vesicles from Nonplanar π-Conjugated Nanocycles. CCS Chemistry, 2021, 3, 1851-1861.	4.6	4
191	Effects of iRGD conjugation density on the in vitro and in vivo properties of cylindrical polymer brushes. Biomaterials Science, 2022, , .	2.6	4
192	Surface relaxation behavior of proton- and perfluoroalkyl-terminated poly(2-vinylpyridine) films. Polymer, 2001, 42, 8959-8964.	1.8	3
193	Gold Encapsulated Chitosanâ€Poly(acrylic acid) Hybrid Hollow Nanospheres. Macromolecular Bioscience, 2009, 9, 1272-1280.	2.1	3
194	Polymer-assisted nanoparticulate contrast-enhancing materials. Science China Chemistry, 2010, 53, 479-486.	4.2	3
195	Preparation and Antitumor Activity of a Polymeric Derivative of Methotrexate. American Journal of the Medical Sciences, 2012, 344, 294-299.	0.4	3
196	A Practical Strategy for Constructing Nanodrugs Using Carbon Nanotubes as Carriers. Methods in Molecular Biology, 2011, 751, 565-582.	0.4	3
197	Preparation of porous chitosan-poly(acrylic acid)-calcium phosphate hybrid nanoparticles via mineralization. Science Bulletin, 2009, 54, 3127-3136.	1.7	2
198	Effect of Hydrophilically Functionalized Carbon Nanotubes on the Reinforcement of Water-Borne Epoxy Resin. Journal of Nanoscience and Nanotechnology, 2011, 11, 5169-5178.	0.9	2

#	Article	IF	CITATIONS
199	Long-Circulating Polymeric Drug Nanocarriers. ACS Symposium Series, 2012, , 27-36.	0.5	2
200	Facile preparation of a novel mulberry silk fibroin scaffold for three-dimensional tumor cell culture. Materials Letters, 2015, 143, 8-11.	1.3	2
201	Chain End Group-Induced Surface Ordering in Poly(styrene-b-4-vinylpyridine) Symmetric Diblock Copolymer Films. Polymer Journal, 1999, 31, 1015-1020.	1.3	1
202	Controlled free radical polymerization of styrene initiated from the alkoxyamine-functionalized silicon surface. Science in China Series B: Chemistry, 2005, 48, 449.	0.8	1
203	Inside Cover: Spontaneous Formation of Giant Polymer Vesicles through a Nucleation and Growth Pathway (Chem. Asian J. 8/2012). Chemistry - an Asian Journal, 2012, 7, 1726-1726.	1.7	0
204	Frontispiz: Tracking Cancer Metastasis Inâ€Vivo by Using an Iridiumâ€Based Hypoxiaâ€Activated Optical Oxygen Nanosensor. Angewandte Chemie, 2015, 127, .	1.6	0
205	Frontispiece: Tracking Cancer Metastasis Inâ€Vivo by Using an Iridiumâ€Based Hypoxiaâ€Activated Optical Oxygen Nanosensor. Angewandte Chemie - International Edition, 2015, 54, .	7.2	0
206	Fluorination and Betaine Modification Augment the Bloodâ€Brain Barrierâ€Crossing Ability of Cylindrical Polymer Brushes. Angewandte Chemie, 0, , .	1.6	0