Maria D. M. C. Ribeiro da Silva

List of Publications by Citations

Source: https://exaly.com/author-pdf/7411440/maria-d-m-c-ribeiro-da-silva-publications-by-citations.pdf **Version:** 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,719 191 25 37 h-index g-index citations papers 2,903 3.1 4.99 201 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
191	Enthalpies of combustion of 1,2-dihydroxybenzene and of six alkylsubstituted 1,2-dihydroxybenzenes. <i>Journal of Chemical Thermodynamics</i> , 1984 , 16, 1149-1155	2.9	197
190	Energetics of 6-methoxyquinoline and 6-methoxyquinoline N-oxide: the dissociation enthalpy of the (NâD) bond. <i>Journal of Chemical Thermodynamics</i> , 2003 , 35, 1093-1100	2.9	78
189	Enthalpies of Formation of N-Substituted Pyrazoles and Imidazoles. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 9336-9344	2.8	58
188	Solvent and Structural Effects in the NâH Bond Homolytic Dissociation Energy. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 2119-2130	2.8	51
187	Levoglucosan: A Calorimetric, Thermodynamic, Spectroscopic, and Computational Investigation. <i>Journal of Chemical & Data</i> , 2013, 58, 1813-1821	2.8	44
186	Experimental and computational thermochemical study of sulfur-containing amino acids: L-cysteine, L-cystine, and L-cysteine-derived radicals. S-S, S-H, and C-S bond dissociation enthalpies. Journal of Physical Chemistry B, 2010 , 114, 10530-40	3.4	42
185	Enthalpies of combustion of the pyridine N-oxide derivatives: 4-methyl-, 3-cyano-, 4-cyano-, 3-hydroxy-, 2-carboxy-, 4-carboxy-, and 3-methyl-4-nitro, and of the pyridine derivatives: 2-carboxy-, and 4-carboxy The dissociation enthalpies of the N-O bonds. <i>Journal of Chemical Thermodynamics</i> ,	2.9	42
184	A thermodynamic investigation of the cellulose allomorphs: Cellulose(am), cellulose II(cr), cellulose II(cr), and cellulose III(cr). <i>Journal of Chemical Thermodynamics</i> , 2015 , 81, 184-226	2.9	39
183	Thermochemistry of adenosine. <i>Journal of Chemical Thermodynamics</i> , 2001 , 33, 929-947	2.9	35
182	Is uracil aromatic? The enthalpies of hydrogenation in the gaseous and crystalline phases, and in aqueous solution, as tools to obtain an answer. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 5826-36	2.8	33
181	Energetic studies and phase diagram of thioxanthene. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 12988	-9.4	33
180	Revisiting dibenzothiophene thermochemical data: Experimental and computational studies. Journal of Chemical Thermodynamics, 2009 , 41, 1199-1205	2.9	32
179	The Dissociation Enthalpies of Terminal (NâD) Bonds in Organic Compounds. <i>Journal of Physical and Chemical Reference Data</i> , 2005 , 34, 553-572	4.3	30
178	Molecular thermochemical study of Ni(II), Cu(II) and Zn(II) complexes with N,N?-bis(salicylaldehydo)ethylenediamine. <i>Journal of Molecular Catalysis A</i> , 2004 , 224, 207-212		30
177	Experimental thermochemical study of the enthalpies of formation and sublimation of isonicotinamide, picolinamide, nicotinamide, isonicotinamideN-oxide, and nicotinamideN-oxide. The dissociation enthalpies of the Nâ® bonds. <i>Journal of Chemical Thermodynamics</i> , 2001 , 33, 1263-1275	2.9	30
176	Fluorene: An extended experimental thermodynamic study. <i>Journal of Chemical Thermodynamics</i> , 2012 , 45, 53-58	2.9	29
175	Experimental and computational thermochemical study of Balanine (DL) and Balanine. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 16471-80	3.4	29

174	Energetics of metalaligand binding incopper(II) andnickel(II) complexes of two Schiff bases. <i>Journal of the Chemical Society Dalton Transactions</i> , 1997 , 1257-1262		29
173	Enthalpies of combustion of 4-nitropyridineN-oxide and pyridine-3-carboxylic acidN-oxide: the dissociation enthalpies of the NâD bonds in pyridineN-oxide derivatives. <i>Journal of Chemical Thermodynamics</i> , 1995 , 27, 391-398	2.9	29
172	Enthalpies of combustion of thiobenzamide, N, N-dimethylthiobenzamide, and N, N-diethylthiobenzamide. <i>Journal of Chemical Thermodynamics</i> , 1989 , 21, 173-178	2.9	29
171	From 2-hydroxypyridine to 4(3H)-pyrimidinone: computational study on the control of the tautomeric equilibrium. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 12668-74	2.8	26
170	Thermochemical and Theoretical Study of Some Quinoxaline 1,4-Dioxides and of Pyrazine 1,4-Dioxide. <i>Journal of Organic Chemistry</i> , 1997 , 62, 3722-3726	4.2	26
169	Structural studies of cyclic ureas: 1. Enthalpies of formation of imidazolidin-2-one and N,N?-trimethyleneurea. <i>Journal of Chemical Thermodynamics</i> , 2008 , 40, 386-393	2.9	26
168	Energetic studies of two oxygen heterocyclic compounds Xanthone and tetrahydro-Epyrone. Journal of Thermal Analysis and Calorimetry, 2009 , 97, 827-833	4.1	25
167	Thermodynamic properties of quinoxaline-1,4-dioxide derivatives: a combined experimental and computational study. <i>Journal of Organic Chemistry</i> , 2004 , 69, 2785-92	4.2	25
166	Enthalpies of combustion of 1,4-naphthoquinone, 9,10-anthraquinone, 9,10-phenanthraquinone, 1,4,9,10-anthradiquinone, 5,8-dihydroxy-1,4-naphthoquinone, and 1,4-dihydroxy-9,10-anthraquinone. <i>Journal of Chemical Thermodynamics</i> , 1989 , 21, 265-274	2.9	25
165	Thermodynamic properties of glycerol enthalpies of combustion and vaporization and the heat capacity at 298.15 K. Enthalpies of solution in water at 288.15, 298.15, and 308.15 K. <i>Journal of Chemical Thermodynamics</i> , 1988 , 20, 1353-1359	2.9	24
164	Thermochemical studies on salicylaldehyde and salicylamide. <i>Journal of Chemical Thermodynamics</i> , 2007 , 39, 1372-1376	2.9	23
163	Thermodynamic properties of fluoranthene: An experimental and computational study. <i>Journal of Chemical Thermodynamics</i> , 2012 , 49, 159-164	2.9	22
162	Standard enthalpies of formation of bis(pentane-2,4-dionato)Cu(II) and of four bis(methyl-substituted heptane-3,5-dionato)Cu(II) complexes: the mean (Cu?O) bond-dissociation enthalpies. <i>Journal of Chemical Thermodynamics</i> , 1984 , 16, 137-144	2.9	22
161	Thermochemistry of 2-amino-3-quinoxalinecarbonitrile-1,4-dioxide. Evaluation of the mean dissociation enthalpy of the (N-O) bond. <i>Organic and Biomolecular Chemistry</i> , 2004 , 2, 2507-12	3.9	21
160	Volatility and thermodynamic stability of vanillin. <i>Journal of Chemical Thermodynamics</i> , 2019 , 128, 45-54	2.9	20
159	Oxygen and sulfur heterocyclic compounds. <i>Journal of Thermal Analysis and Calorimetry</i> , 2015 , 121, 105	941:071	1 20
158	Experimental and Computational Studies on the Structural and Thermodynamic Properties of Two Sulfur Heterocyclic Keto Compounds. <i>Journal of Chemical & Data</i> , 2010, 55, 5009-5017	2.8	20
157	Energetic effects of ether and ketone functional groups in 9,10-dihydroanthracene compound. Journal of Chemical Thermodynamics, 2010, 42, 1248-1254	2.9	20

156	Enthalpies of combustion, heat capacities, and enthalpies of vaporization of 1-ethylimidazole and 1-ethylpyrazole. <i>Journal of Chemical Thermodynamics</i> , 1999 , 31, 129-138	2.9	20
155	Thermochemistry of ⊕-xylose(cr). <i>Journal of Chemical Thermodynamics</i> , 2013 , 58, 20-28	2.9	19
154	Experimental and computational thermochemical studies of benzoxazole and two chlorobenzoxadole derivatives. <i>Journal of Chemical Thermodynamics</i> , 2013 , 57, 212-219	2.9	19
153	Structural studies of cyclic ureas: 3. Enthalpy of formation of barbital. <i>Journal of Chemical Thermodynamics</i> , 2009 , 41, 1400-1407	2.9	19
152	Substituent Effects on Enthalpies of Formation: Benzene Derivatives. <i>Journal of Physical Chemistry A</i> , 2003 , 107, 366-371	2.8	19
151	Enthalpies of combustion, heat capacities, and enthalpies of vaporisation of 1-phenylimidazole and 1-phenylpyrazole. <i>Journal of Chemical Thermodynamics</i> , 2000 , 32, 237-245	2.9	19
150	Enthalpies of combustion of phenazine N-oxide, phenazine, benzofuroxan, and benzofurazan: the dissociation enthalpies of the (N?O) bonds. <i>Journal of Chemical Thermodynamics</i> , 1990 , 22, 923-928	2.9	19
149	Enthalpies of formation of hexakis(isopropoxy)-dimolybdenum and octakis-(isopropoxy)-dimolybdenum and the metalâthetal bond enthalpy contributions. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1981 , 77, 1585		19
148	A computational study on the energetics and reactivity of some xanthene and thioxanthene derivatives. <i>Structural Chemistry</i> , 2013 , 24, 661-670	1.8	18
147	Molecular energetics of 4-methyldibenzothiophene: An experimental study. <i>Journal of Chemical Thermodynamics</i> , 2010 , 42, 251-255	2.9	18
146	Molecular energetics of cytosine revisited: a joint computational and experimental study. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 7237-42	2.8	18
145	Thermochemical and Theoretical Studies of Dimethylpyridine-2,6-dicarboxylate and Pyridine-2,3-, Pyridine-2,5-, and Pyridine-2,6-dicarboxylic Acids. <i>Journal of Chemical & Data</i> , 2005, 50, 1184-1191	2.8	18
144	Enthalpies of combustion of 1-hydroxynaphthalene, 2-hydroxynaphthalene, and 1,2-, 1,3-, 1,4-, and 2,3-dihydroxynaphthalenes. <i>Journal of Chemical Thermodynamics</i> , 1988 , 20, 969-974	2.9	18
143	Energetic, structural and tautomeric analysis of 2-mercaptobenzimidazole. <i>Journal of Thermal Analysis and Calorimetry</i> , 2017 , 129, 1679-1688	4.1	17
142	Energetic and structural properties of 4-nitro-2,1,3-benzothiadiazole. <i>Journal of Chemical Thermodynamics</i> , 2012 , 49, 146-153	2.9	17
141	Experimental and computational thermochemical studies of 9-R-xanthene derivatives (ROH, COOH, CONH2). <i>Journal of Chemical Thermodynamics</i> , 2012 , 54, 108-117	2.9	17
140	Computational thermochemistry of six ureas, imidazolidin-2-one, N,NRtrimethyleneurea, benzimidazolinone, parabanic acid, barbital (5,5Rdiethylbarbituric acid), and 3,4,4Rtrichlorocarbanilide, with an extension to related compounds. <i>Journal of Physical Chemistry A</i> ,	2.8	17
139	2010, 114, 9237-45 Experimental thermochemical study of 2,5- and 2,6-dichloro-4-nitroanilines. <i>Journal of Chemical Thermodynamics</i> , 2009, 41, 1074-1080	2.9	17

(2006-2008)

138	Structural studies of cyclic ureas: 2. Enthalpy of formation of parabanic acid. <i>Journal of Chemical Thermodynamics</i> , 2008 , 40, 1378-1385	2.9	17
137	Experimental thermochemical study of three monosubstituted pyrazines. <i>Journal of Chemical Thermodynamics</i> , 2005 , 37, 49-53	2.9	17
136	Thermochemical properties of two benzimidazole derivatives: 2-Phenyl- and 2-benzylbenzimidazole. <i>Journal of Chemical Thermodynamics</i> , 2005 , 37, 1168-1176	2.9	17
135	Experimental and Computational Study of the Thermodynamic Properties of 9-Fluorenone and 9-Fluorenol. <i>Journal of Chemical & Engineering Data</i> , 2012 , 57, 2486-2496	2.8	16
134	Thermodynamic study on hydroxybenzaldehyde derivatives: 3- and 4-Hydroxybenzaldehyde isomers and 3,5-di-tert-butyl-2-hydroxybenzaldehyde. <i>Journal of Chemical Thermodynamics</i> , 2010 , 42, 472-477	2.9	16
133	Standard molar enthalpies of formation of the acetylpyridine isomers. <i>Journal of Chemical Thermodynamics</i> , 2007 , 39, 39-43	2.9	16
132	Substituent and ring effects on enthalpies of formation: 2-methyl- and 2-ethylbenzimidazoles versus benzene- and imidazole-derivatives. <i>Molecular Physics</i> , 2004 , 102, 711-721	1.7	16
131	Enthalpies of formation of M(IC5H5)2L complexes (M = Mo, W, Ti; L = C6H4O2, C10H6O2, C14H8O2). <i>Journal of Organometallic Chemistry</i> , 1988 , 345, 105-115	2.3	16
130	Structural, energetic and reactivity properties of phenoxazine and phenothiazine. <i>Journal of Chemical Thermodynamics</i> , 2014 , 73, 110-120	2.9	15
129	Energetic study of benzothiazole and two methylbenzothiazole derivatives: Calorimetric and computational approaches. <i>Journal of Chemical Thermodynamics</i> , 2014 , 73, 3-11	2.9	15
128	Thermochemical studies on 3-methyl-quinoxaline-2-carboxamide-1,4-dioxide derivatives: enthalpies of formation and of N-O bond dissociation. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 2075-80	3.4	15
127	Energetics of the N-O bonds in 2-hydroxyphenazine-di-N-oxide. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 16188-95	3.4	15
126	Substituent effects on enthalpies of formation of nitrogen heterocycles: 2-substituted benzimidazoles and related compounds. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 2535-44	2.8	15
125	Energetics and Reactivity of Morpholine and Thiomorpholine: A Joint Experimental and Computational Study. <i>Journal of Chemical & Engineering Data</i> , 2014 , 59, 312-322	2.8	14
124	Dibenzofuran and methyldibenzofuran derivatives: assessment of thermochemical data. <i>Structural Chemistry</i> , 2013 , 24, 1923-1933	1.8	14
123	Thermodynamic properties of bromine fluorene derivatives: An experimental and computational study. <i>Journal of Chemical Thermodynamics</i> , 2015 , 89, 134-141	2.9	14
122	Experimental and computational study of the energetics of hydantoin and 2-thiohydantoin. <i>Journal of Chemical Thermodynamics</i> , 2013 , 58, 158-165	2.9	14
121	Quinoxaline-1,4-dioxide: Substituent effects on the Nât bond dissociation enthalpy. <i>Chemical Physics Letters</i> , 2006 , 429, 18-22	2.5	14

120	Thermochemical studies of two copper(II) complexes with N-benzoyl-NMNM-dialkylurea derivatives. <i>Thermochimica Acta</i> , 2001 , 378, 45-50	2.9	14
119	Thermochemical and crystallographic studies of some I-ketoimine derivatives. <i>Journal of the Chemical Society Perkin Transactions II</i> , 1993 , 1765-1769		14
118	Enthalpies of combustion of the three trihydroxybenzenes and of 3-methoxycatechol and 4-nitrocatechol. <i>Journal of Chemical Thermodynamics</i> , 1986 , 18, 295-300	2.9	14
117	Thermodynamic study of 2-aminothiazole and 2-aminobenzothiazole: Experimental and computational approaches. <i>Journal of Chemical Thermodynamics</i> , 2014 , 74, 67-77	2.9	13
116	Energetics of aminomethylpyrimidines: An examination of the aromaticity of nitrogen heteromonocyclic derivatives. <i>Journal of Chemical Thermodynamics</i> , 2013 , 62, 186-195	2.9	13
115	Experimental thermochemical study of 4,5-dichloro-2-nitroaniline. <i>Journal of Chemical Thermodynamics</i> , 2009 , 41, 1247-1253	2.9	13
114	Experimental and theoretical study of the dissociation enthalpy of the NâD bond on 2-hydroxypyridine N-oxide: theoretical analysis of the energetics of the NâD bond for hydroxypyrydine N-oxide isomers. <i>Journal of Chemical Thermodynamics</i> , 2004 , 36, 107-113	2.9	13
113	Mean copper-ligand binding enthalpies in copper(II) complexes of dimethylglyoxime, glycine, acetic acid and 4-phenylamino-3-penten-2-one. <i>Thermochimica Acta</i> , 1990 , 160, 267-280	2.9	13
112	Energetic and Structural Properties of Two Phenolic Antioxidants: Tyrosol and Hydroxytyrosol. Journal of Physical Chemistry A, 2018 , 122, 4130-4137	2.8	12
111	A computational study on the thermochemistry of methylbenzo- and methyldibenzothiophenes. <i>Computational and Theoretical Chemistry</i> , 2010 , 946, 20-25		12
110	Experimental thermochemical study of two 2-alkylbenzimidazole isomers (alkyl=propyl and isopropyl). <i>Journal of Chemical Thermodynamics</i> , 2004 , 36, 533-539	2.9	12
109	Enthalpies of combustion of 2,4,6-trimethylbenzonitrile, 2,4,6-trimethylbenzonitrile N-oxide, 2,6-dimethylbenzonitrile, 2,4,6-trimethoxybenzonitrile, and 2,4,6-trimethoxybenzonitrile N-oxide: the dissociation enthalpies of the (NO) bonds. <i>Journal of Chemical Thermodynamics</i> , 1991 , 23, 31-36	2.9	12
108	Thermochemistry of some metallic amino acid complexes. <i>Thermochimica Acta</i> , 1992 , 205, 115-125	2.9	12
107	Comprehensive thermophysical and thermochemical studies of vanillyl alcohol. <i>Journal of Chemical Thermodynamics</i> , 2016 , 102, 287-292	2.9	12
106	Thermochemistry of 2-methylbenzoxazole and 2,5-dimethylbenzoxazole: an experimental and computational study. <i>Structural Chemistry</i> , 2013 , 24, 1863-1872	1.8	11
105	Thermochemistry of sarcosine and sarcosine anhydride: Theoretical and experimental studies. Journal of Chemical Thermodynamics, 2013, 58, 315-321	2.9	11
104	Energetic study of bromobenzonitrile isomers: insights on the intermolecular interactions, aromaticity and electronegativity. <i>Structural Chemistry</i> , 2013 , 24, 1935-1944	1.8	11
103	Vapor Pressures and Enthalpies of Combustion of the Dihydroxybenzoic Acid Isomers. <i>Journal of Chemical & Chem</i>	2.8	11

(2014-2003)

1	102	Thermochemical and structural studies of Cu(II) and Ni(II) complexes with N,N-diethyl-N?-pivaloylthiourea. <i>Inorganica Chimica Acta</i> , 2003 , 356, 95-102	2.7	11
-	101	Synthesis, characterization and thermochemical properties of N-acyl-N?,N?-diethylthioureas. <i>Perkin Transactions II RSC</i> , 2001 , 2174-2178		11
-	100	Effects of methoxy and formyl substituents on the energetics and reactivity of ⊕aphthalenes: a calorimetric and computational study. <i>Chemosphere</i> , 2014 , 107, 203-210	8.4	10
ý	99	Energetic study of 4(3H)-pyrimidinone: aromaticity of reactions, hydrogen bond rules, and support for an anomeric effect. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 3360-6	2.8	10
٥	98	Thermochemical insights on the conformational energetics of azepan and azepan-1-ylacetonitrile. Journal of Organic Chemistry, 2014 , 79, 11583-91	4.2	10
Ç	97	A combined experimental and computational thermodynamic study of fluorene-9-methanol and fluorene-9-carboxylic acid. <i>Journal of Chemical Thermodynamics</i> , 2013 , 62, 222-230	2.9	10
٥	96	Experimental and computational thermochemical study of N-benzylalanines. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 9401-9	3.4	10
ý	95	Enthalpies of combustion of di-n-propylamine, diisopropylamine, diisobutylamine, and di-sec-butylamine. <i>Journal of Chemical Thermodynamics</i> , 1997 , 29, 1025-1030	2.9	10
Š	94	Experimental study of the energetics of tetradentate N2O2 Schiff bases derived from salicylaldehyde. <i>Thermochimica Acta</i> , 2004 , 420, 67-71	2.9	10
ý	93	Thermochemistry of inosine. <i>Journal of Chemical Thermodynamics</i> , 2005 , 37, 1239-1249	2.9	10
Š	92	Standard molar enthalpies of formation of crystallinel-,d- anddl-valine. <i>Journal of Chemical Thermodynamics</i> , 2000 , 32, 1037-1043	2.9	10
رَ	91	Thermochemical studies for determination of the molar enthalpy of formation of aniline derivatives. <i>Structural Chemistry</i> , 1996 , 7, 367-373	1.8	10
Š	90	Thermochemistry of some metallic amino acid complexes. <i>Thermochimica Acta</i> , 1992 , 205, 99-113	2.9	10
8	89	5-Isopropylbarbituric and 2-thiobarbituric acids: An experimental and computational study. <i>Thermochimica Acta</i> , 2016 , 625, 36-46	2.9	9
8	88	Experimental and computational study of the thermodynamic properties of 2-nitrofluorene and 2-aminofluorene. <i>Journal of Chemical Thermodynamics</i> , 2014 , 76, 56-63	2.9	9
{	87	Thermodynamic study of chlorobenzonitrile isomers: a survey on the polymorphism, pseudosymmetry, and the chlorometyano interaction. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 1502-10) ^{2.8}	9
8	86	Structural and energetic characterization of the tautomers 2-benzothiazolinone and 2-hydroxybenzothiazole. <i>Journal of Molecular Structure</i> , 2014 , 1078, 197-206	3.4	9
8	85	Experimental study on the energetics of two indole derivatives. <i>Journal of Thermal Analysis and Calorimetry</i> , 2014 , 115, 803-810	4.1	9

84	Experimental thermochemical study of two chlorodinitroaniline isomers. <i>Journal of Chemical Thermodynamics</i> , 2010 , 42, 496-501	2.9	9
83	Energetic and structural characterization of 2-R-3-methylquinoxaline-1,4-dioxides (R = benzoyl or tert-butoxycarbonyl): experimental and computational studies. <i>Journal of Physical Organic Chemistry</i> , 2007 , 20, 491-498	2.1	9
82	Experimental standard molar enthalpies of formation of crystalline 3,5-dimethylpyrazole, 3,5-dimethyl-4-nitrosopyrazole, 1,3,5-trimethyl-4-nitrosopyrazole, and 3,5-dimethyl-1-phenyl-4-nitrosopyrazole. <i>Journal of Chemical Thermodynamics</i> , 2001 , 33, 1227-1235	2.9	9
81	Standard molar enthalpy of sublimation of crystalline 3-pyridinecarboxylic acid. <i>Journal of Chemical Thermodynamics</i> , 2000 , 32, 1071-1073	2.9	9
80	The influence of the hydroxy and methoxy functional groups on the energetic and structural properties of naphthaldehyde as evaluated by both experimental and computational methods. <i>Structural Chemistry</i> , 2015 , 26, 137-149	1.8	8
79	Experimental and computational energetic study of 1-R-2-phenylindole (R = H, CH3, C2H5). <i>Journal of Chemical Thermodynamics</i> , 2015 , 85, 129-140	2.9	8
78	Energetic insights on two dye key molecules: N-methylphenothiazine and N-methylphenoxazine. Journal of Chemical Thermodynamics, 2016 , 94, 7-15	2.9	8
77	The effect of ketone groups on the energetic properties of phthalan derivatives. <i>Journal of Chemical Thermodynamics</i> , 2016 , 96, 74-81	2.9	8
76	Experimental and computational thermochemical studies of 6-azauracil derivatives. <i>Journal of Chemical Thermodynamics</i> , 2016 , 96, 93-103	2.9	8
75	Experimental and computational study on the energetics of the cyclic anhydrides of glycine and alanine. <i>Journal of Chemical Thermodynamics</i> , 2013 , 58, 29-35	2.9	8
74	Thermochemistry of 6-propyl-2-thiouracil: An experimental and computational study. <i>Thermochimica Acta</i> , 2014 , 588, 68-74	2.9	8
73	Molecular energetics of alkyl substituted pyridine N-oxides. <i>Journal of Thermal Analysis and Calorimetry</i> , 2010 , 100, 431-439	4.1	8
72	Energetic studies of urea derivatives: Standard molar enthalpy of formation of 3,4,4?-trichlorocarbanilide. <i>Journal of Chemical Thermodynamics</i> , 2010 , 42, 536-544	2.9	8
71	Thermodynamic Properties of Three Pyridine Carboxylic Acid Methyl Ester Isomers. <i>Journal of Chemical & Chemic</i>	2.8	8
70	Three N2O2 ligands derived from the condensation of 1,2-cyclohexanediaminewith salicylaldehyde, acetylacetone and benzoylacetone. <i>Journal of Thermal Analysis and Calorimetry</i> , 2007 , 87, 291-296	4.1	8
69	Enthalpies of combustion of 2-iodosobenzoic acid and 4-nitrosophenol: the dissociation enthalpy of the IâD bond. <i>Journal of Chemical Thermodynamics</i> , 1999 , 31, 1551-1559	2.9	8
68	Enthalpies of combustion of 2,2?,4,4?,6,6?-hexamethylazobenzene-N,N-dioxide, 2,2?,6,6?-tetramethylazobenzene-N,N-dioxide, 2,4,6-trimethylnitrobenzene, and 2,6-dimethylnitrobenzene: the dissociation enthalpies of the N=N and N-O bonds. <i>Journal of</i>	2.9	8
67	Enthalpies of combustion of three benzylidene t-butylamine N-oxide derivatives and of 4-nitrobenzylidene t-butylamine: the dissociation enthalpies of the (N?O) bonds. <i>Journal of Chemical Thermodynamics</i> , 1989 , 21, 443-448	2.9	8

(2006-2016)

66	Vapor pressures, thermodynamic stability, and fluorescence properties of three 2,6-alkyl naphthalenes. <i>Chemosphere</i> , 2016 , 146, 173-81	8.4	8
65	Thermochemical study of dichloromethylpyrimidine isomers. <i>Journal of Chemical Thermodynamics</i> , 2016 , 100, 148-155	2.9	7
64	Thermodynamic properties of alkyl 1 H -indole carboxylate derivatives: A combined experimental and computational study. <i>Journal of Chemical Thermodynamics</i> , 2016 , 97, 70-82	2.9	7
63	Structural and energetic characterization of anhydrous and hemihydrated 2-mercaptoimidazole: Calorimetric, X-ray diffraction, and computational studies. <i>Journal of Chemical Thermodynamics</i> , 2016 , 95, 35-48	2.9	7
62	Efeitos energtico-estruturais em compostos heteropolicalicos com oxighio ou enxofre. <i>Quimica Nova</i> , 2013 , 36, 840-847	1.6	7
61	Thermochemical study of three dimethylpyrazine derivatives. <i>Journal of Thermal Analysis and Calorimetry</i> , 2008 , 92, 73	4.1	7
60	Enthalpies of combustion of 4-dimethylamino-nitrosobenzene and 4-dimethylaminonitrobenzene. <i>Journal of Chemical Thermodynamics</i> , 1994 , 26, 85-90	2.9	7
59	Standard enthalpies of formation of N, N?-ethylenebis (4-aminopent-3-en-2-one) and N, N?-ethylenebis (3-amino-1-phenylbut-2-en-1-one). <i>Journal of Chemical Thermodynamics</i> , 1995 , 27, 613-621	2.9	7
58	Enthalpies of combustion of p-azoxyanisole and p-azoxyphenetole: the dissociation enthalpy of the N-O bonds. Enthalpies of crystal-to-(liquid crystal) transitions. <i>Journal of Chemical Thermodynamics</i> , 1993 , 25, 653-659	2.9	7
57	Study on the volatility of halogenated fluorenes. <i>Chemosphere</i> , 2016 , 157, 25-32	8.4	7
56	Comprehensive Thermochemical Study of Cyclic Five- and Six-Membered N,N?-Thioureas. <i>Journal of Chemical & Che</i>	2.8	6
55	Vapour pressures, enthalpies and Gibbs energies of formation and sublimation of fluorene-2-carboxaldehyde. <i>Journal of Chemical Thermodynamics</i> , 2017 , 111, 65-71	2.9	6
54	Thermochemistry of R-SH group in gaseous phase: Experimental and theoretical studies of three sulfur imidazole derivatives. <i>Journal of Chemical Thermodynamics</i> , 2018 , 122, 65-72	2.9	6
53	Energetic effects of alkyl groups (methyl and ethyl) on the nitrogen of the morpholine structure. <i>Journal of Thermal Analysis and Calorimetry</i> , 2017 , 130, 485-496	4.1	6
52	Calorimetric and computational studies for three nitroimidazole isomers. <i>Journal of Chemical Thermodynamics</i> , 2017 , 105, 267-275	2.9	6
51	The enthalpies of dissociation of the N?O bonds in two quinoxaline derivatives. <i>Journal of Physical Organic Chemistry</i> , 2009 , 22, 17-23	2.1	6
50	Experimental Thermochemical Study of 6-Chloro-2,3-dimethylquinoxaline 1,4-Dioxide and DFT Evaluation of the Nâ® Bond Enthalpies in Related Haloquinoxalines. <i>Bulletin of the Chemical Society of Japan</i> , 2007 , 80, 1770-1775	5.1	6
49	Experimental thermochemical study of two polymethylpyrazine N,N?-dioxide derivatives. <i>Thermochimica Acta</i> , 2006 , 450, 67-70	2.9	6

48	Enthalpies of combustion of 1,4-dicyanobenzene di-N-oxide and 1,4-dicyanobenzene: the mean dissociation enthalpy of the (NO) bonds. <i>Journal of Chemical Thermodynamics</i> , 1992 , 24, 213-216	2.9	6
47	Thermal and structural properties of ethyl 2- and 3-aminobenzoates: Experimental and computational approaches. <i>Journal of Chemical Thermodynamics</i> , 2019 , 133, 93-99	2.9	6
46	Thermodynamic properties of 2,7-di- tert -butylfluorene âlAn experimental and computational study. <i>Journal of Chemical Thermodynamics</i> , 2016 , 101, 115-122	2.9	6
45	Thermochemical studies on two alkyl-bulky substituted xanthene derivatives: 9,9-dimethylxanthene and 2,7-di-tert-butyl-9,9-dimethylxanthene. <i>Journal of Chemical Thermodynamics</i> , 2017 , 106, 168-177	2.9	5
44	Energetic vs structural effects of aminoalkyl substituents in the morpholine. <i>Journal of Chemical Thermodynamics</i> , 2018 , 122, 95-101	2.9	5
43	Energetic characterization of indanone derivatives involved in biomass degradation. <i>Journal of Thermal Analysis and Calorimetry</i> , 2018 , 134, 1267-1276	4.1	5
42	Experimental and computational study on the energetics of N-acetyl-l-cysteine. <i>Journal of Chemical Thermodynamics</i> , 2014 , 73, 57-61	2.9	5
41	From 2,4-dimethoxypyrimidine to 1,3-dimethyluracil: isomerization and hydrogenation enthalpies and noncovalent interactions. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 4816-23	2.8	5
40	Thermochemical properties of 4-N,N-dialkylamino-7-nitrobenzofurazan derivatives (alkyl=methyl, ethyl). <i>Journal of Chemical Thermodynamics</i> , 2014 , 73, 62-68	2.9	5
39	Thermodynamic and aromaticity studies for the assessment of the halogen?cyano interactions on Iodobenzonitrile. <i>Journal of Chemical Thermodynamics</i> , 2013 , 65, 204-212	2.9	5
38	Synthesis and thermochemical study of quinoxaline-N-oxides: enthalpies of dissociation of the NâD bond. <i>Journal of Physical Organic Chemistry</i> , 2012 , 25, 420-426	2.1	5
37	Thermochemical study of twoN-benzoyl-N?,N?-dialkylureas. <i>Journal of Chemical Thermodynamics</i> , 2000 , 32, 1113-1119	2.9	5
36	Enthalpies of combustion of 5-methoxybenzofurazan, 5-methoxybenzofurazan-1-oxide, 5-methylbenzofurazan-1-oxide, 5-chlorobenzofurazan-1-oxide and 4-nitro-benzofurazan-1-oxide: the dissociation enthalpies of the NâD bonds. <i>Journal of Chemical Thermodynamics</i> , 1996 , 28, 673-683	2.9	5
35	Enthalpies of combustion of 2,2?,6,6?-tetraethylazobenzeneN,N-dioxide, 2,4,6-tri(1,1-dimethylethyl)nitrosobenzene, and 2,4,6-tri(1,1-dimethylethyl)nitrobenzene. <i>Journal of Chemical Thermodynamics</i> , 1995 , 27, 1433-1440	2.9	5
34	Energetic characterization of uracil derivatives: Orotic and isoorotic acids. <i>Thermochimica Acta</i> , 2020 , 683, 178474	2.9	5
33	Thermochemical and conformational study of optical active phenylbenzazole derivatives. <i>Journal of Chemical Thermodynamics</i> , 2018 , 116, 7-20	2.9	5
32	Experimental and computational thermochemical study of two fluorobenzazoles: 5-fluoro-2-methylbenzoxazole and 5-fluoro-2-methylbenzothiazole. <i>Journal of Chemical Thermodynamics</i> , 2018 , 120, 157-163	2.9	5
31	Corrections to standard state in combustion calorimetry: An update and a web-based tool. <i>Journal of Chemical Thermodynamics</i> , 2021 , 158, 106425	2.9	5

(2021-2021)

30	The Relative Thermodynamic Stability of Diamond and Graphite. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 1546-1549	16.4	5
29	Energetic Effect of the Carboxylic Acid Functional Group in Indole Derivatives. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 2980-2989	2.8	4
28	Thermodynamic properties of Eaprolactam and Eaprothiolactam. <i>Journal of Chemical Thermodynamics</i> , 2019 , 132, 451-460	2.9	4
27	Benzocaine: A comprehensive thermochemical study. <i>Journal of Chemical Thermodynamics</i> , 2020 , 147, 106119	2.9	4
26	Thermodynamic properties of naphthoxazole and naphthothiazole derivatives: Experimental and computational studies. <i>Journal of Chemical Thermodynamics</i> , 2018 , 127, 45-55	2.9	4
25	Thermochemistry of 2,2?-dipyridil N-oxide and 2,2?-dipyridil N,N?-dioxide. The dissociation enthalpies of the NâD bonds. <i>Journal of Chemical Thermodynamics</i> , 2011 , 43, 1044-1049	2.9	4
24	Thermochemical Study of Three Hindered Pyridine Derivatives. <i>Journal of Chemical & Engineering Data</i> , 2008 , 53, 1820-1823	2.8	4
23	Certification of B.D.H. Thermochemical standard benzoic acid. <i>Journal of Chemical Thermodynamics</i> , 1984 , 16, 401-402	2.9	4
22	Energetic vs structural study of two biomass degradation derivatives: 2-Cyclopentenone and 3-methyl-2-cyclopentenone. <i>Journal of Chemical Thermodynamics</i> , 2019 , 132, 390-396	2.9	4
21	Influence of Hydroxyl Functional Group on the Structure and Stability of Xanthone: A Computational Approach. <i>Molecules</i> , 2018 , 23,	4.8	4
20	Calorimetric and computational study of (1H-Indol-n-yl)methanol and 2-(1H-Indol-n-yl)ethanol (n=2, 3). <i>Thermochimica Acta</i> , 2019 , 673, 169-176	2.9	3
19	Assessment of Thermochemical Data of EButyrolactone from Experimental and Computational Studies. <i>Journal of Chemical & Data & D</i>	2.8	3
18	Energetic characterization of a bioactive compound: Uridine. <i>Journal of Chemical Thermodynamics</i> , 2018 , 124, 90-97	2.9	3
17	Thermochemical study of the dicyanoimidazole isomers. <i>Structural Chemistry</i> , 2014 , 25, 775-783	1.8	3
16	Energetic and reactivity properties of 9,10-dihydroacridine and diphenylamine: A comparative overview. <i>Journal of Chemical Thermodynamics</i> , 2017 , 115, 276-284	2.9	3
15	Enthalpy of combustion of 4-diethylaminonitrosobenzene. <i>Journal of Chemical Thermodynamics</i> , 1998 , 30, 271-274	2.9	3
14	A calorimetric study of N, N-diethyl-N?-furoylthiourea and N, N-diisobutyl-N?-furoylthiourea. <i>Journal of Chemical Thermodynamics</i> , 2002 , 34, 155-161	2.9	3
13	Energetics of tetradentate N2O2 schiff bases containing different alkyldiimine brigdes. <i>Thermochimica Acta</i> , 2021 , 695, 178817	2.9	3

12	Experimental and computational thermochemical studies of acridone and N-methylacridone. <i>Journal of Chemical Thermodynamics</i> , 2018 , 118, 115-126	2.9	3
11	Influence of the functional groups âNH2, âDCH3, and âDH on the thermochemistry of indanes. <i>Canadian Journal of Chemistry</i> , 2019 , 97, 788-794	0.9	2
10	The enthalpy of formation of the isomeric 2,3- and 2,5-dihydrofuran. <i>Journal of Chemical Thermodynamics</i> , 2016 , 97, 135-136	2.9	2
9	Standard molar enthalpy of formation of crystalline dicarbonylbiscyclopentadienyltitanium(II). <i>Journal of Organometallic Chemistry</i> , 1990 , 393, 359-363	2.3	2
8	Thermodynamic properties of 2-mercapto-, 2,5-dimethyl- and 2-mercapto-5-methyl-1,3,4-thiadiazole. <i>Journal of Chemical Thermodynamics</i> , 2022 , 165, 106644	2.9	2
7	Structural and Energetic Insights on Two Dye Compounds: 1-Acetyl-2-Naphthol and 2-Acetyl-1-Naphthol. <i>Molecules</i> , 2020 , 25,	4.8	2
6	Thermochemical study of anthranilate derivatives: Effect of the size of the alkyl substituent. <i>Journal of Chemical Thermodynamics</i> , 2021 , 158, 106441	2.9	2
5	Metalâlīgand binding energies in copper (II) and nickel (II) complexes with tetradentate N2O2 Schiff base ligands. <i>Inorganica Chimica Acta</i> , 2022 , 535, 120845	2.7	O
4	Energetic and Structural Studies of Two Biomass-Derived Compounds: 6- and 7-hydroxy-1-indanones. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 8512	2.6	
3	Combustion Calorimetry 2012 , 1		

1 The Relative Thermodynamic Stability of Diamond and Graphite. *Angewandte Chemie*, **2021**, 133, 1570-1573