Frederik Lm Gailly

List of Publications by Citations

Source: https://exaly.com/author-pdf/7411413/frederik-lm-gailly-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

300 15 45 10 h-index g-index citations papers 3.65 48 352 1.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
45	Comparing traditional conceptual modeling with ontology-driven conceptual modeling: An empirical study. <i>Information Systems</i> , 2019 , 81, 92-103	2.7	32
44	Insights on the Use and Application of Ontology and Conceptual Modeling Languages in Ontology-Driven Conceptual Modeling. <i>Lecture Notes in Computer Science</i> , 2016 , 83-97	0.9	27
43	Positioning and Formalizing the REA Enterprise Ontology. <i>Journal of Information Systems</i> , 2008 , 22, 219	9- 2 .498	21
42	Towards a decision-aware declarative process modeling language for knowledge-intensive processes. <i>Expert Systems With Applications</i> , 2017 , 87, 316-334	7.8	19
41	Ontology-driven conceptual modeling: Aßystematic literature mapping and review. <i>Applied Ontology</i> , 2015 , 10, 197-227	1.4	18
40	Enhancing Declarative Process Models with DMN Decision Logic. <i>Lecture Notes in Business Information Processing</i> , 2015 , 151-165	0.6	18
39	The Structured Process Modeling Theory (SPMT) a cognitive view on why and how modelers benefit from structuring the process of process modeling. <i>Information Systems Frontiers</i> , 2015 , 17, 1401-1425	4	17
38	The pragmatic quality of Resources- Events-Agents diagrams: an experimental evaluation. <i>Information Systems Journal</i> , 2011 , 21, 63-89	5.9	13
37	Towards Ontology-Driven Information Systems: Redesign and Formalization of the REA Ontology 2007 , 245-259		13
36	Ontology-Driven Business Modelling: Improving the Conceptual Representation of the REA Ontology. <i>Lecture Notes in Computer Science</i> , 2007 , 407-422	0.9	12
35	Measuring the Perceived Semantic Quality of Information Models. <i>Lecture Notes in Computer Science</i> , 2005 , 376-385	0.9	9
34	The Structured Process Modeling Method (SPMM) what is the best way for me to construct a process model?. <i>Decision Support Systems</i> , 2017 , 100, 57-76	5.6	8
33	Ontology-Driven Business Rule Specification. <i>Journal of Information Systems</i> , 2013 , 27, 79-104	1.9	8
32	Using the REA Ontology to Create Interoperability between E-Collaboration Modeling Standards. <i>Notes on Numerical Fluid Mechanics and Multidisciplinary Design</i> , 2009 , 395-409	0.3	8
31	On the Symbiosis between Enterprise Modelling and Ontology Engineering. <i>Lecture Notes in Computer Science</i> , 2013 , 487-494	0.9	7
30	Integrating Business Domain Ontologies with Early Requirements Modelling. <i>Lecture Notes in Computer Science</i> , 2008 , 282-291	0.9	7
29	PoN-S: A Systematic Approach for Applying the Physics of Notation (PoN). <i>Lecture Notes in Business Information Processing</i> , 2016 , 432-447	0.6	6

(2020-2005)

28	Object Class or Association Class? Testing the User Effect on Cardinality Interpretation. <i>Lecture Notes in Computer Science</i> , 2005 , 33-42	0.9	6
27	Recommendation-Based Conceptual Modeling and Ontology Evolution Framework (CMOE+). <i>Business and Information Systems Engineering</i> , 2017 , 59, 235-250	3.8	5
26	Supporting and assisting the execution of flexible healthcare processes 2015,		5
25	Comprehending 3D and 4D ontology-driven conceptual models: An empirical study. <i>Information Systems</i> , 2020 , 93, 101568	2.7	4
24	Discovering health-care processes using DeciClareMiner. <i>Health Systems</i> , 2018 , 7, 195-211	2.3	4
23	Business process modeling: An accounting information systems perspective. <i>International Journal of Accounting Information Systems</i> , 2014 , 15, 185-192	4.4	4
22	Conceptual modeling using domain ontologies 2010 ,		3
21	The Design of a Core Value Ontology Using Ontology Patterns. <i>Lecture Notes in Computer Science</i> , 2016 , 183-193	0.9	3
20	A Generic Framework for Flexible and Data-Aware Business Process Engines. <i>Lecture Notes in Business Information Processing</i> , 2019 , 201-213	0.6	2
19	Enterprise-Specific Ontology-Driven Process Modelling. <i>Lecture Notes in Business Information Processing</i> , 2015 , 472-488	0.6	2
18	Generating Business Process Recommendations with a Population-Based Meta-Heuristic. <i>Lecture Notes in Business Information Processing</i> , 2015 , 516-528	0.6	2
17	An Exploratory Analysis on the Comprehension of 3D and 4D Ontology-Driven Conceptual Models. <i>Lecture Notes in Computer Science</i> , 2016 , 163-172	0.9	2
16	Cognitive Aspects of Structured Process Modeling. <i>Lecture Notes in Business Information Processing</i> , 2013 , 168-173	0.6	2
15	3D vs. 4D Ontologies in Enterprise Modeling. <i>Lecture Notes in Computer Science</i> , 2014 , 13-22	0.9	2
14	Comparing Digital Platform Types in the Platform Economy. <i>Lecture Notes in Computer Science</i> , 2021 , 417-431	0.9	2
13	Sharing Platform Ontology Development: Proof-of-Concept. Sustainability, 2022, 14, 2076	3.6	2
12	Domain Ontology for Digital Marketplaces. Lecture Notes in Computer Science, 2019, 191-200	0.9	1
11	Towards a Reference Ontology for Digital Platforms. <i>Lecture Notes in Computer Science</i> , 2020 , 289-302	0.9	1

10	Towards a Structured Process Modeling Method: Building the Prescriptive Modeling Theory. Lecture Notes in Business Information Processing, 2017 , 168-179	0.6	1
9	Experimental Evaluation of an Ontology-Driven Enterprise Modeling Language. <i>Lecture Notes in Computer Science</i> , 2011 , 163-172	0.9	1
8	Integrated Declarative Process and Decision Discovery of the Emergency Care Process. <i>Information Systems Frontiers</i> , 2020 , 1	4	1
7	Comparing strategies to generate experience-based clinical process recommendations that leverage similarity to historic data 2019 ,		1
6	Thoroughly Modern Accounting: Shifting to a De Re Conceptual Pattern for Debits and Credits. Lecture Notes in Computer Science, 2018 , 134-148	0.9	
5	Towards an Operational REA Business Ontology. <i>Advances in E-Business Research Series</i> , 2009 , 222-243	0.4	
4	Preface ODISE 2011. Lecture Notes in Business Information Processing, 2011, 397-400	0.6	
3	An Ontological Analysis Framework for Domain-Specific Modeling Languages. <i>Journal of Database Management</i> , 2018 , 29, 23-42	2.2	
2	Empirical Comparison of Model Consistency Between Ontology-Driven Conceptual Modeling and Traditional Conceptual Modeling. <i>Lecture Notes in Computer Science</i> , 2018 , 43-57	0.9	
1	A Method for Ontology-Driven Minimum Viable Platform Development. <i>Lecture Notes in Business Information Processing</i> , 2022 , 253-266	0.6	