Michel Grisel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7410877/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: relationships between both data. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 421, 150-163.	2.3	110
2	Prickly pear nopals pectin from Opuntia ficus-indica physico-chemical study in dilute and semi-dilute solutions. Carbohydrate Polymers, 2001, 46, 69-79.	5.1	105
3	Impact of chemical composition of xanthan and acacia gums on the emulsification and stability of oil-in-water emulsions. Food Hydrocolloids, 2012, 27, 401-410.	5.6	102
4	Predicting sensory texture properties of cosmetic emulsions by physical measurements. Chemometrics and Intelligent Laboratory Systems, 2013, 124, 21-31.	1.8	100
5	Impact of emollients on the spreading properties of cosmetic products: A combined sensory and instrumental characterization. Colloids and Surfaces B: Biointerfaces, 2013, 102, 371-378.	2.5	87
6	Intumescent polypropylene/flax blends: a preliminary study. Polymer Degradation and Stability, 2005, 88, 80-84.	2.7	74
7	Peel ply surface treatment for composite assemblies: Chemistry and morphology effects. Composites Part A: Applied Science and Manufacturing, 2005, 36, 1562-1568.	3.8	70
8	Effect of xanthan structure on its interaction with locust bean gum: Toward prediction of rheological properties. Food Hydrocolloids, 2013, 32, 331-340.	5.6	68
9	Surface treatment of carbon/epoxy and glass/epoxy composites with an excimer laser beam. International Journal of Adhesion and Adhesives, 2006, 26, 543-549.	1.4	65
10	Release of limonene from polysaccharide matrices: viscosity and synergy effect. Food Chemistry, 2003, 82, 227-234.	4.2	64
11	Roughness and fibre reinforcement effect onto wettability of composite surfaces. Applied Surface Science, 2007, 253, 4753-4758.	3.1	59
12	Experimental study of inertioelastic Couette–Taylor instability modes in dilute and semidilute polymer solutions. Physics of Fluids, 2002, 14, 1681-1688.	1.6	55
13	Hydrophobically Modified Xanthan: An Amphiphilic but Not Associative Polymer. Biomacromolecules, 2014, 15, 1160-1170.	2.6	54
14	Plant-Derived Colorants for Food, Cosmetic and Textile Industries: A Review. Materials, 2021, 14, 3484.	1.3	45
15	Rheological Properties of the Schizophyllanâ^'Borax System. Macromolecules, 1998, 31, 4277-4281.	2.2	43
16	Influence of fibre reinforcement and peel ply surface treatment towards adhesion of composite surfaces. International Journal of Adhesion and Adhesives, 2005, 25, 404-409.	1.4	42
17	Stretching properties of xanthan, carob, modified guar and celluloses in cosmetic emulsions. Carbohydrate Polymers, 2013, 93, 644-650.	5.1	42
18	Influence of the emollient structure on the properties of cosmetic emulsion containing lamellar liquid crystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 536, 10-19.	2.3	39

MICHEL GRISEL

#	Article	IF	CITATIONS
19	Impact of Polymers on Texture Properties of Cosmetic Emulsions: A Methodological Approach. Journal of Sensory Studies, 2012, 27, 392-402.	0.8	33
20	Spreading properties of cosmetic emollients: Use of synthetic skin surface to elucidate structural effect. Colloids and Surfaces B: Biointerfaces, 2017, 154, 307-314.	2.5	33
21	How does composition influence the texture of cosmetic emulsions?. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 536, 38-46.	2.3	31
22	Influence of chemical composition of polysaccharides on aroma retention. Food Hydrocolloids, 2008, 22, 1097-1104.	5.6	28
23	Influence of the Polymer Surface Layer on the Adhesion of Polymer Matrix Composites. Journal of Thermoplastic Composite Materials, 2009, 22, 51-61.	2.6	28
24	Effect of salt on turbulent drag reduction of xanthan gum. Carbohydrate Polymers, 2015, 121, 342-347.	5.1	28
25	Impact of fine structure of galactomannans on their interactions with xanthan: Two co-existing mechanisms to explain the synergy. Food Hydrocolloids, 2015, 51, 449-458.	5.6	27
26	Skin surface physico-chemistry: Characteristics, methods of measurement, influencing factors and future developments. Advances in Colloid and Interface Science, 2019, 264, 11-27.	7.0	25
27	Instrumental and sensory methodologies to characterize the residual film of topical products applied to skin. Skin Research and Technology, 2019, 25, 415-423.	0.8	23
28	Relationship between the emulsifying properties of Acacia gums and the retention and diffusion of aroma compounds. Food Hydrocolloids, 2010, 24, 178-183.	5.6	20
29	Cosmetics and Personal Care Products. , 2016, , 219-261.		19
30	Chemical modification of xanthan in the ordered and disordered states: An open route for tuning the physico-chemical properties. Carbohydrate Polymers, 2017, 178, 115-122.	5.1	18
31	Flavour release study as a way to explain xanthan–galactomannan interactions. Food Hydrocolloids, 2007, 21, 1237-1244.	5.6	17
32	Impact of coated TiO2-nanoparticles used in sunscreens on two representative strains of the human microbiota: Effect of the particle surface nature and aging. Colloids and Surfaces B: Biointerfaces, 2017, 158, 339-348.	2.5	17
33	Hydrophobically modified xanthan: Thickening and surface active agent for highly stable oil in water emulsions. Carbohydrate Polymers, 2019, 205, 362-370.	5.1	17
34	Stretching properties of xanthan and hydroxypropyl guar in aqueous solutions and in cosmetic emulsions. Carbohydrate Polymers, 2014, 112, 334-341.	5.1	16
35	The alkyl polyglucoside/fatty alcohol ratio effect on the formation of liquid crystal phases in binary systems. Journal of Molecular Liquids, 2018, 253, 45-52.	2.3	16
36	Effects of aging on structure and stability of TiO2 nanoparticle-containing oil-in-water emulsions. International Journal of Pharmaceutics, 2014, 461, 89-96.	2.6	15

MICHEL GRISEL

#	Article	IF	CITATIONS
37	Study of interactions between aroma compounds and acacia gum using headspace measurements. Food Hydrocolloids, 2014, 37, 1-6.	5.6	15
38	On the key role of process parameters to control stability and properties of Pickering emulsions stabilized by montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123952.	2.3	13
39	Prediction of residual film perception of cosmetic products using an instrumental method and non-biological surfaces: The example of stickiness after skin application. Colloids and Surfaces B: Biointerfaces, 2019, 174, 181-188.	2.5	13
40	Determination of galactose and mannose residues in natural galactomannans using a fast and efficient high-performance liquid chromatography/UV detection. Journal of Chromatography A, 2008, 1181, 45-50.	1.8	12
41	Influence of the emollient on emulsions containing lamellar liquid crystals: from molecular organization towards applicative properties. International Journal of Cosmetic Science, 2018, 40, 565-574.	1.2	11
42	Impact of backbone stiffness and hydrophobic chain length of modified xanthan on oil in water emulsion stabilization. Carbohydrate Polymers, 2019, 216, 352-359.	5.1	11
43	Impact of cigarette smoke on physicalâ€ c hemical and molecular proprieties of human skin in an ex vivo model. Experimental Dermatology, 2021, 30, 1610-1618.	1.4	11
44	Multifunctional active ingredient-based delivery systems for skincare formulations: A review. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112676.	2.5	10
45	Shear interfacial viscoelasticity of native and hydrophobically modified xanthan at oil/water interface. Food Hydrocolloids, 2016, 61, 887-894.	5.6	9
46	The salt effect over the physical interactions occurring for schizophyllan in the presence of borate ions. Macromolecular Symposia, 1997, 114, 127-132.	0.4	8
47	Stabilizing effect of acacia gum on the xanthan helical conformation in aqueous solution. Food Hydrocolloids, 2014, 35, 181-188.	5.6	8
48	Development of preservative-free nanoparticles-based emulsions: Effects of NP surface properties and sterilization process. International Journal of Pharmaceutics, 2016, 510, 125-134.	2.6	8
49	Effect of temperature on the release of volatile and odorous compounds in flax fibers. Journal of Applied Polymer Science, 2016, 133, .	1.3	8
50	Squalene Oxidation Induced by Urban Pollutants: Impact on Skin Surface Physico-Chemistry. Chemical Research in Toxicology, 2019, 32, 285-293.	1.7	8
51	Leather Dyeing by Plant-Derived Colorants in the Presence of Natural Additives. Materials, 2022, 15, 3326.	1.3	6
52	The effect of solution surface tension on aroma compound release from aqueous xanthan solutions. Flavour and Fragrance Journal, 2006, 21, 8-12.	1.2	5
53	Design of a Lipid-Coated Polymeric Material Mimic Human Skin Surface Properties: a Performing Tool to Evaluate Skin Interaction with Topical Products. Langmuir, 2020, 36, 4582-4591.	1.6	4
54	Original tools for xanthan hydrophobization in green media: Synthesis and characterization of surface activity. Carbohydrate Polymers, 2022, 291, 119548.	5.1	4

MICHEL GRISEL

#	Article	IF	CITATIONS
55	Synergy between pristine and hydrophobically modified xanthans for stabilizing oil-in-water emulsions. Colloids and Interface Science Communications, 2020, 37, 100292.	2.0	3
56	Impact of the synergistic interaction between xanthan and galactomannan on the stickiness properties of residual film after application on a surface. Carbohydrate Polymers, 2021, 255, 117500.	5.1	3
57	Residual film formation after emulsion application: Understanding the role and fate of excipients on skin surface. International Journal of Pharmaceutics, 2020, 585, 119453.	2.6	3
58	On the Influence of Polymer Surface Layer Thickness on the Adhesion of Composite Assembly. Differences between Initial State and Thermal Ageing. Macromolecular Symposia, 2007, 249-250, 635-640.	0.4	2
59	Determination of specific interactions between aroma compounds and xanthan/galactomannan mixtures. Developments in Food Science, 2006, 43, 421-424.	0.0	1
60	Using of Volatile Release Measurements to Understand Polysaccharide Molecular Interactions: An Example with Guar Gum Study. Macromolecular Symposia, 2007, 251, 96-102.	0.4	0