
Bobby Kannan Mathan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7410870/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials, 2008, 29, 2306-2314.	5.7	491
2	Advances in functionalized polymer coatings on biodegradable magnesium alloys – A review. Acta Biomaterialia, 2018, 79, 23-36.	4.1	338
3	Calciumâ€ion Batteries: Current Stateâ€ofâ€theâ€Art and Future Perspectives. Advanced Materials, 2018, 30, e1801702.	11.1	294
4	Influence of surface roughness on the corrosion behaviour of magnesium alloy. Materials & Design, 2011, 32, 2350-2354.	5.1	203
5	Stress corrosion cracking of rare-earth containing magnesium alloys ZE41, QE22 and Elektron 21 (EV31A) compared with AZ80. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 480, 529-539.	2.6	155
6	Self-Assembled Porous Tantalum Oxide Prepared in H[sub 2]SO[sub 4]/HF Electrolytes. Electrochemical and Solid-State Letters, 2005, 8, J10.	2.2	146
7	Polylactic acid coating on a biodegradable magnesium alloy: An in vitro degradation study by electrochemical impedance spectroscopy. Thin Solid Films, 2012, 520, 6841-6844.	0.8	97
8	Evaluating the stress corrosion cracking susceptibility of Mg–Al–Zn alloy in modified-simulated body fluid for orthopaedic implant application. Scripta Materialia, 2008, 59, 175-178.	2.6	94
9	Biodegradation behavior of micro-arc oxidation coating on magnesium alloy-from a protein perspective. Bioactive Materials, 2020, 5, 398-409.	8.6	92
10	Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31—Influence of EDTA. Journal of Materials Science and Technology, 2019, 35, 1088-1098.	5.6	86
11	In-vitro degradation behaviour of WE54 magnesium alloy in simulated body fluid. Materials Letters, 2011, 65, 748-750.	1.3	83
12	A study on the SCC susceptibility of friction stir welded AZ31 Mg sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 460-461, 243-250.	2.6	79
13	Influence of zinc on the microstructure, mechanical properties and inÂvitro corrosion behavior of magnesium–zinc binary alloys. Journal of Alloys and Compounds, 2015, 648, 291-296.	2.8	78
14	Enhancing stress corrosion cracking resistance in Al–Zn–Mg–Cu–Zr alloy through inhibiting recrystallization. Engineering Fracture Mechanics, 2010, 77, 249-256.	2.0	76
15	Pitting-induced hydrogen embrittlement of magnesium–aluminium alloy. Materials & Design, 2012, 42, 321-326.	5.1	68
16	Comparative studies on the corrosion properties of a Fe–Mn–Al–Si steel and an interstitial-free steel. Corrosion Science, 2008, 50, 2879-2884.	3.0	67
17	Hydrogen-induced-cracking in magnesium alloy under cathodic polarization. Scripta Materialia, 2007, 57, 579-581.	2.6	62
18	Biodiesel production via simultaneous transesterification and esterification reactions over SrO–ZnO/Al2O3 as a bifunctional catalyst using high acidic waste cooking oil. Chemical Engineering Research and Design, 2020, 162, 238-248.	2.7	62

#	Article	IF	CITATIONS
19	Influence of microstructure on the in-vitro degradation behaviour of magnesium alloys. Materials Letters, 2010, 64, 739-742.	1.3	59
20	Effect of surface roughness on the in vitro degradation behaviour of a biodegradable magnesium-based alloy. Applied Surface Science, 2013, 279, 343-348.	3.1	59
21	Ultrathin film coating of hydroxyapatite (HA) on a magnesium–calcium alloy using RF magnetron sputtering for bioimplant applications. Materials Letters, 2015, 152, 280-282.	1.3	59
22	<i>In vitro</i> mechanical integrity of hydroxyapatite coated magnesium alloy. Biomedical Materials (Bristol), 2011, 6, 045003.	1.7	57
23	Enhancing the performance of calcium phosphate coating on a magnesium alloy for bioimplant applications. Materials Letters, 2012, 76, 109-112.	1.3	57
24	Electrochemical deposition of calcium phosphates on magnesium and its alloys for improved biodegradation performance: A review. Surface and Coatings Technology, 2016, 301, 36-41.	2.2	54
25	Stress corrosion cracking behavior of Nd:YAG laser butt welded AZ31 Mg sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 444, 220-226.	2.6	53
26	Potentiostatic pulse-deposition of calcium phosphate on magnesium alloy for temporary implant applications — An in vitro corrosion study. Materials Science and Engineering C, 2013, 33, 675-679.	3.8	50
27	Biocompatibility and biodegradation studies of a commercial zinc alloy for temporary mini-implant applications. Scientific Reports, 2017, 7, 15605.	1.6	50
28	Dealloying corrosion of anodic and nanometric Mg41Nd5 in solid solution-treated Mg-3Nd-1Li-0.2Zn alloy. Journal of Materials Science and Technology, 2021, 83, 161-178.	5.6	49
29	Novel Sustainable Route for Synthesis of Hydroxyapatite Biomaterial from Biowastes. ACS Sustainable Chemistry and Engineering, 2017, 5, 2237-2245.	3.2	47
30	Corrosion resistance of nanostructured magnesium hydroxide coating on magnesium alloy AZ31: influence of EDTA. Rare Metals, 2019, 38, 520-531.	3.6	45
31	Advances in hydroxyapatite coatings on biodegradable magnesium and its alloys. Journal of Magnesium and Alloys, 2022, 10, 1154-1170.	5.5	45
32	Performance of pulsed constant current silicate-based PEO coating on pure magnesium in simulated body fluid. Materials Letters, 2013, 106, 18-21.	1.3	43
33	Influence of Heat Treatment and Scandium Addition on the Electrochemical Polarization Behavior of Al-Zn-Mg-Cu-Zr Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 2843-2852.	1.1	42
34	Influence of circumferential notch and fatigue crack on the mechanical integrity of biodegradable magnesiumâ€based alloy in simulated body fluid. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 96B, 303-309.	1.6	40
35	Polyoxadiazole-based coating for corrosion protection of magnesium alloy. Surface and Coatings Technology, 2008, 202, 4598-4601.	2.2	38
36	In vitro degradation behaviour of a friction stir processed magnesium alloy. Journal of Materials Science: Materials in Medicine, 2011, 22, 2397-2401.	1.7	38

#	Article	IF	CITATIONS
37	Corrosion and Wear Resistance of Microâ€Arc Oxidation Composite Coatings on Magnesium Alloy AZ31—The Influence of Inclusions of Carbon Spheres. Advanced Engineering Materials, 2019, 21, 1900446.	1.6	38
38	Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study. Applied Surface Science, 2014, 301, 463-467.	3.1	37
39	Improving the packing density of calcium phosphate coating on a magnesium alloy for enhanced degradation resistance. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1248-1254.	2.1	34
40	Advances in bioorganic molecules inspired degradation and surface modifications on Mg and its alloys. Journal of Magnesium and Alloys, 2022, 10, 670-688.	5.5	33
41	Hybrid coating on a magnesium alloy for minimizing the localized degradation for load-bearing biodegradable mini-implant applications. Materials Chemistry and Physics, 2013, 142, 350-354.	2.0	30
42	Aqueous corrosion performance of nanostructured bainitic steel. Materials & Design, 2014, 54, 67-71.	5.1	30
43	Influence of living cells (L929) on the biodegradation of magnesium–calcium alloy. Colloids and Surfaces B: Biointerfaces, 2015, 126, 603-606.	2.5	26
44	Dual layer inorganic coating on magnesium for delaying the biodegradation for bone fixation implants. Materials Letters, 2014, 124, 188-191.	1.3	25
45	Low elastic modulus Ti–Ta alloys for load-bearing permanent implants: Enhancing the biodegradation resistance by electrochemical surface engineering. Materials Science and Engineering C, 2015, 46, 226-231.	3.8	25
46	Biocompatibility and in Vitro Degradation Behavior of Magnesium–Calcium Alloy Coated with Calcium Phosphate Using an Unconventional Electrolyte. ACS Biomaterials Science and Engineering, 2016, 2, 56-64.	2.6	24
47	Determination of true stress corrosion cracking susceptibility index of a high strength Al alloy using glycerin as the non-corrosive atmosphere. Scripta Materialia, 2004, 51, 1075-1079.	2.6	23
48	Corrosion behavior of twinningâ€induced plasticity (TWIP) steel. Materials and Corrosion - Werkstoffe Und Korrosion, 2013, 64, 231-235.	0.8	23
49	Environmentally assisted cracking behavior of peak-aged 7010 aluminum alloy containing scandium. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 3257-3262.	1.1	22
50	Conversion of biowastes to biomaterial: An innovative waste management approach. Waste Management, 2017, 67, 67-72.	3.7	22
51	Understanding the influence of HEPES buffer concentration on the biodegradation of pure magnesium: An electrochemical study. Materials Chemistry and Physics, 2017, 197, 47-56.	2.0	20
52	Role of coarse intermetallic particles on the environmentally assisted cracking behavior of peak aged and over aged Al–Zn–Mg–Cu–Zr alloy during slow strain rate testing. Journal of Materials Science, 2007, 42, 5458-5464.	1.7	18
53	Electrochemical surface engineering of magnesium metal by plasma electrolytic oxidation and calcium phosphate deposition: biocompatibility and <i>in vitro</i> degradation studies. RSC Advances, 2018, 8, 29189-29200.	1.7	18
54	A mechanistic <i>in vitro</i> study of the microgalvanic degradation of secondary phase particles in magnesium alloys. Journal of Biomedical Materials Research - Part A, 2015, 103, 990-1000.	2.1	17

#	Article	IF	CITATIONS
55	Biocompatibility and Degradation of a Low Elastic Modulus Ti-35Nb-3Zr Alloy: Nanosurface Engineering for Enhanced Degradation Resistance. ACS Biomaterials Science and Engineering, 2017, 3, 509-517.	2.6	17
56	Biodegradability of β-Mg17Al12 phase in simulated body fluid. Materials Letters, 2012, 82, 54-56.	1.3	16
57	Influence of the cathodic activity of magnesium alloys on the electrochemical deposition of calcium phosphate. Materials Letters, 2014, 130, 184-187.	1.3	16
58	A mechanistic study of <i>in vitro</i> degradation of magnesium alloy using electrochemical techniques. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1050-1055.	2.1	15
59	Stress corrosion cracking (SCC) of aluminium alloys. , 2011, , 307-340.		15
60	Ion Implantation of Calcium and Zinc in Magnesium for Biodegradable Implant Applications. Metals, 2018, 8, 30.	1.0	15
61	Hydrogen permeation in twinning-induced plasticity (TWIP) steel. International Journal of Hydrogen Energy, 2018, 43, 22685-22693.	3.8	14
62	Antipsychotic drug waste: A potential corrosion inhibitor for mild steel in the oil and gas industry. Waste Management, 2022, 145, 38-47.	3.7	13
63	Stress corrosion cracking (SCC) of magnesium alloys. , 2011, , 341-380.		11
64	Plasma electrolytic oxidation/micro-arc oxidation ofÂmagnesium and its alloys. , 2015, , 193-234.		11
65	Self-dissolution assisted coating on magnesium metal for biodegradable bone fixation devices. Materials Research Express, 2014, 1, 045406.	0.8	10
66	Hydrogen Permeation in Nanostructured Bainitic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 4896-4903.	1.1	10
67	Calcium Phosphate Deposition on Magnesium Alloy for Bioimplant Applications. Materials Science Forum, 2010, 654-656, 2196-2199.	0.3	9
68	Galvanostatic polymerisation of aniline on steel: Improving the coating performance in chloride-containing environment. Synthetic Metals, 2013, 180, 54-58.	2.1	8
69	Selective Dissolution of Retained Austenite in Nanostructured Bainitic Steels. Advanced Engineering Materials, 2014, 16, 442-444.	1.6	8
70	Biodegradable polymeric coatings for surface modification of magnesium-based biomaterials. , 2015, , 355-376.		8
71	Effect of cathodic hydrogen-charging current density on the hydrogen diffusivity in nanostructured bainitic steels. Materials Science and Technology, 2017, 33, 1548-1552.	0.8	8

52 Stress corrosion cracking (SCC) of copper and copper-based alloys. , 2011, , 409-426.

7

#	Article	IF	CITATIONS
73	Electropolymerisation of Aniline on AZ91 Magnesium Alloy: The Effect of Coating Electrolyte Corrosiveness. Metals, 2017, 7, 533.	1.0	7
74	In vitro degradation and biocompatibility of vitamin C loaded Ca-P coating on a magnesium alloy for bioimplant applications. Corrosion Communications, 2022, 6, 16-28.	2.7	7
75	Corrosion resistance of Mg-Al-LDH steam coating on AZ80 Mg alloy: Effects of citric acid pretreatment and intermetallic compounds. Journal of Magnesium and Alloys, 2023, 11, 2967-2979.	5.5	6
76	Optimising parameters for galvanostatic polyaniline coating on nanostructured bainitic steel. Surface Engineering, 2016, 32, 607-614.	1.1	5
77	Biodegradable 3D porous zinc alloy scaffold for bone fracture fixation devices. Medical Devices & Sensors, 2020, 3, e10108.	2.7	5
78	Enhancing the Localized Corrosion Resistance of High Strength 7010 Al-Alloy. Advanced Materials Research, 0, 138, 1-6.	0.3	4
79	A tripleâ€ ł ayered hybrid coating with selfâ€organized microporous polymer film on magnesium for biodegradable implant applications. Medical Devices & Sensors, 2020, 3, e10070.	2.7	4
80	ENVIRONMENTALLY-ASSISTED CRACKING OF ENGINEERING MATERIALS - AN INSIGHT. Corrosion Reviews, 2009, 27, 147-180.	1.0	3
81	Effects of process parameters on the adhesive strength of copper electrodeposits in a bench-scale electrowinning cell. Institutions of Mining and Metallurgy Transactions Section C: Mineral Processing and Extractive Metallurgy, 2016, 125, 10-16.	0.6	3
82	Electrochemical Corrosion Behaviour of ZE41 and QE22 Magnesium Alloys. Materials Science Forum, 0, 690, 385-388.	0.3	2
83	Hydrogen depth profiles and microhardness of electrochemically hydrogen-charged nanostructured bainitic steels. International Journal of Hydrogen Energy, 2019, 44, 14064-14069.	3.8	2
84	Recent Approaches for Enhancing Corrosion Resistance of PEO/MAO-Coated Mg and Its Alloys. , 2022, , 465-488.		2
85	Laser assisted surface modification of AZ91 alloy: Microstructural and electrochemical study. Transactions of the Indian Institute of Metals, 2008, 61, 121-124.	0.7	1
86	Nanoscience and biomaterial corrosion control. , 2012, , 375-392.		1
87	Electrochemical Corrosion Behaviour of WE54 Magnesium Alloy. Materials Science Forum, 2013, 765, 644-647.	0.3	1
88	Magnesium Alloys as Biodegradable Implants. Materials Science Forum, 2009, 618-619, 83-86.	0.3	0
89	Role of Recrystallized Grains on the Environment-Assisted Cracking of Aluminium-Alloy. Materials Science Forum, 2013, 753, 489-492.	0.3	0