Britt A Glaunsinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7410422/publications.pdf

Version: 2024-02-01

62 papers 3,416 citations

172457 29 h-index 54 g-index

84 all docs 84 docs citations

84 times ranked 3468 citing authors

#	Article	IF	Citations
1	A Two-tiered functional screen identifies herpesviral transcriptional modifiers and their essential domains. PLoS Pathogens, 2022, 18, e1010236.	4.7	10
2	Manipulation of RNA polymerase III by Herpes Simplex Virus-1. Nature Communications, 2022, 13, 623.	12.8	15
3	Vaccinia virus D10 has broad decapping activity that is regulated by mRNA splicing. PLoS Pathogens, 2022, 18, e1010099.	4.7	11
4	A pentameric protein ring with novel architecture is required for herpesviral packaging. ELife, 2021, 10, .	6.0	9
5	Cytoplasmic mRNA decay represses RNA polymerase II transcription during early apoptosis. ELife, 2021, 10, .	6.0	12
6	The N-terminal domain of SARS-CoV-2Ânsp1 plays key roles in suppression of cellular gene expression and preservation of viral gene expression. Cell Reports, 2021, 37, 109841.	6.4	78
7	Conserved Cx _n C Motifs in Kaposi's Sarcoma-Associated Herpesvirus ORF66 Are Required for Viral Late Gene Expression and Are Essential for Its Interaction with ORF34. Journal of Virology, 2020, 94, .	3.4	12
8	The molecular virology of coronaviruses. Journal of Biological Chemistry, 2020, 295, 12910-12934.	3.4	365
9	The gammaherpesviral TATA-box-binding protein directly interacts with the CTD of host RNA Pol II to direct late gene transcription. PLoS Pathogens, 2020, 16, e1008843.	4.7	13
10	Conserved Herpesvirus Kinase ORF36 Activates B2 Retrotransposons during Murine Gammaherpesvirus Infection. Journal of Virology, 2020, 94, .	3.4	13
11	RNA decay during gammaherpesvirus infection reduces RNA polymerase II occupancy of host promoters but spares viral promoters. PLoS Pathogens, 2020, 16, e1008269.	4.7	19
12	Alteration of the Premature tRNA Landscape by Gammaherpesvirus Infection. MBio, 2020, 11, .	4.1	10
13	Title is missing!. , 2020, 16, e1008843.		O
14	Title is missing!. , 2020, 16, e1008843.		0
15	Title is missing!. , 2020, 16, e1008843.		O
16	Title is missing!. , 2020, 16, e1008843.		0
17	An integrative approach identifies direct targets of the late viral transcription complex and an expanded promoter recognition motif in Kaposi's sarcoma-associated herpesvirus. PLoS Pathogens, 2019, 15, e1007774.	4.7	16
18	Feedback to the central dogma: cytoplasmic mRNA decay and transcription are interdependent processes. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 385-398.	5.2	39

#	Article	IF	CITATIONS
19	Endosomal Toll-Like Receptors 7 and 9 Cooperate in Detection of Murine Gammaherpesvirus 68 Infection. Journal of Virology, 2019, 93, .	3.4	21
20	Not immune to modification. Nature Immunology, 2019, 20, 116-118.	14.5	0
21	The Interaction between ORF18 and ORF30 Is Required for Late Gene Expression in Kaposi's Sarcoma-Associated Herpesvirus. Journal of Virology, 2019, 93, .	3.4	20
22	Site specific target binding controls RNA cleavage efficiency by the Kaposi's sarcoma-associated herpesvirus endonuclease SOX. Nucleic Acids Research, 2018, 46, 11968-11979.	14.5	22
23	Kaposi's Sarcoma-Associated Herpesvirus ORF68 Is a DNA Binding Protein Required for Viral Genome Cleavage and Packaging. Journal of Virology, 2018, 92, .	3.4	20
24	N6-methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi's sarcoma-associated herpesvirus infection. PLoS Pathogens, 2018, 14, e1006995.	4.7	162
25	Changes in mRNA abundance drive shuttling of RNA binding proteins, linking cytoplasmic RNA degradation to transcription. ELife, 2018, 7, .	6.0	85
26	Genome-wide mapping of infection-induced SINE RNAs reveals a role in selective mRNA export. Nucleic Acids Research, 2017, 45, 6194-6208.	14.5	42
27	Host Noncoding Retrotransposons Induced by DNA Viruses: a SINE of Infection?. Journal of Virology, 2017, 91, .	3.4	12
28	Nuclease escape elements protect messenger RNA against cleavage by multiple viral endonucleases. PLoS Pathogens, 2017, 13, e1006593.	4.7	24
29	Pseudouridylation of 7 <scp>SK</scp> sn <scp>RNA</scp> promotes 7 <scp>SK</scp> sn <scp>RNP</scp> formation to suppress <scp>HIV</scp> â€1 transcription and escape from latency. EMBO Reports, 2016, 17, 1441-1451.	4.5	42
30	Interaction between ORF24 and ORF34 in the Kaposi's Sarcoma-Associated Herpesvirus Late Gene Transcription Factor Complex Is Essential for Viral Late Gene Expression. Journal of Virology, 2016, 90, 599-604.	3.4	39
31	Infection-Induced Retrotransposon-Derived Noncoding RNAs Enhance Herpesviral Gene Expression via the NF-ΰB Pathway. PLoS Pathogens, 2015, 11, e1005260.	4.7	49
32	Transcriptome-Wide Cleavage Site Mapping on Cellular mRNAs Reveals Features Underlying Sequence-Specific Cleavage by the Viral Ribonuclease SOX. PLoS Pathogens, 2015, 11, e1005305.	4.7	35
33	Global Mapping of Herpesvirus-Host Protein Complexes Reveals a Transcription Strategy for Late Genes. Molecular Cell, 2015, 57, 349-360.	9.7	165
34	Emerging roles for RNA degradation in viral replication and antiviral defense. Virology, 2015, 479-480, 600-608.	2.4	89
35	Modulation of the Translational Landscape During Herpesvirus Infection. Annual Review of Virology, 2015, 2, 311-333.	6.7	20
36	Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4306-15.	7.1	250

#	Article	IF	CITATIONS
37	A Ribonucleoprotein Complex Protects the Interleukin-6 mRNA from Degradation by Distinct Herpesviral Endonucleases. PLoS Pathogens, 2015, 11, e1004899.	4.7	42
38	Viral Nucleases Induce an mRNA Degradation-Transcription Feedback Loop in Mammalian Cells. Cell Host and Microbe, 2015, 18, 243-253.	11.0	71
39	Kaposi's Sarcoma-Associated Herpesvirus ORF45 Mediates Transcriptional Activation of the HIV-1 Long Terminal Repeat via RSK2. Journal of Virology, 2014, 88, 7024-7035.	3.4	19
40	Gammaherpesviral Gene Expression and Virion Composition Are Broadly Controlled by Accelerated mRNA Degradation. PLoS Pathogens, 2014, 10, e1003882.	4.7	53
41	Unconventional Sequence Requirement for Viral Late Gene Core Promoters of Murine Gammaherpesvirus 68. Journal of Virology, 2014, 88, 3411-3422.	3.4	35
42	Reinitiation after Translation of Two Upstream Open Reading Frames (ORF) Governs Expression of the ORF35-37 Kaposi's Sarcoma-Associated Herpesvirus Polycistronic mRNA. Journal of Virology, 2014, 88, 6512-6518.	3.4	13
43	Dual Short Upstream Open Reading Frames Control Translation of a Herpesviral Polycistronic mRNA. PLoS Pathogens, 2013, 9, e1003156.	4.7	44
44	An RNA Element in Human Interleukin 6 Confers Escape from Degradation by the Gammaherpesvirus SOX Protein. Journal of Virology, 2013, 87, 4672-4682.	3.4	38
45	A Common Strategy for Host RNA Degradation by Divergent Viruses. Journal of Virology, 2012, 86, 9527-9530.	3.4	121
46	Diverse virus \hat{a} "host interactions influence RNA-based regulation during \hat{l}^3 -herpesvirus infection. Current Opinion in Microbiology, 2012, 15, 506-511.	5.1	4
47	Deep Sequencing Reveals Direct Targets of Gammaherpesvirus-Induced mRNA Decay and Suggests That Multiple Mechanisms Govern Cellular Transcript Escape. PLoS ONE, 2011, 6, e19655.	2.5	45
48	Importin α-Mediated Nuclear Import of Cytoplasmic Poly(A) Binding Protein Occurs as a Direct Consequence of Cytoplasmic mRNA Depletion. Molecular and Cellular Biology, 2011, 31, 3113-3125.	2.3	61
49	Global mRNA Degradation during Lytic Gammaherpesvirus Infection Contributes to Establishment of Viral Latency. PLoS Pathogens, 2011, 7, e1002150.	4.7	57
50	Coordinated Destruction of Cellular Messages in Translation Complexes by the Gammaherpesvirus Host Shutoff Factor and the Mammalian Exonuclease Xrn1. PLoS Pathogens, 2011, 7, e1002339.	4.7	85
51	How tails define the ending: Divergent roles for polyadenylation in RNA stability and gene expression. RNA Biology, 2010, 7, 13-17.	3.1	7
52	Viruses and the cellular RNA decay machinery. Wiley Interdisciplinary Reviews RNA, 2010, 1, 47-59.	6.4	21
53	Nuclear Import of Cytoplasmic Poly(A) Binding Protein Restricts Gene Expression via Hyperadenylation and Nuclear Retention of mRNA. Molecular and Cellular Biology, 2010, 30, 4996-5008.	2.3	99
54	Getting the Message. Advances in Virus Research, 2010, 78, 1-42.	2.1	22

#	Article	IF	CITATIONS
55	Host Shutoff Is a Conserved Phenotype of Gammaherpesvirus Infection and Is Orchestrated Exclusively from the Cytoplasm. Journal of Virology, 2009, 83, 9554-9566.	3.4	91
56	Aberrant Herpesvirus-Induced Polyadenylation Correlates With Cellular Messenger RNA Destruction. PLoS Biology, 2009, 7, e1000107.	5.6	107
57	Host shutoff during productive Epstein-Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3366-3371.	7.1	202
58	Messenger RNA Turnover and its Regulation in Herpesviral Infection. Advances in Virus Research, 2006, 66, 337-394.	2.1	37
59	The Exonuclease and Host Shutoff Functions of the SOX Protein of Kaposi's Sarcoma-Associated Herpesvirus Are Genetically Separable. Journal of Virology, 2005, 79, 7396-7401.	3.4	101
60	Highly Selective Escape from KSHV-mediated Host mRNA Shutoff and Its Implications for Viral Pathogenesis. Journal of Experimental Medicine, 2004, 200, 391-398.	8.5	101
61	Lytic KSHV Infection Inhibits Host Gene Expression by Accelerating Global mRNA Turnover. Molecular Cell, 2004, 13, 713-723.	9.7	203
62	The N-Terminal and Central Domains of CoV-2 nsp1 Play Key Functional Roles in Suppression of Cellular Gene Expression and Preservation of Viral Gene Expression. SSRN Electronic Journal, 0, , .	0.4	0