Sidharam P Pujari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7410400/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Covalent Surface Modification of Oxide Surfaces. Angewandte Chemie - International Edition, 2014, 53, 6322-6356.	7.2	704
2	Plasma Micro-Nanotextured, Scratch, Water and Hexadecane Resistant, Superhydrophobic, and Superamphiphobic Polymeric Surfaces with Perfluorinated Monolayers. ACS Applied Materials & Interfaces, 2014, 6, 6510-6524.	4.0	165
3	Hydrolytic and Thermal Stability of Organic Monolayers on Various Inorganic Substrates. Langmuir, 2014, 30, 5829-5839.	1.6	86
4	Systematic Comparison of Zwitterionic and Non-Zwitterionic Antifouling Polymer Brushes on a Bead-Based Platform. Langmuir, 2019, 35, 1181-1191.	1.6	78
5	SuFExable polymers with helical structures derived from thionyl tetrafluoride. Nature Chemistry, 2021, 13, 858-867.	6.6	74
6	High electrical conductivity and high porosity in a Guest@MOF material: evidence of TCNQ ordering within Cu ₃ BTC ₂ micropores. Chemical Science, 2018, 9, 7405-7412.	3.7	73
7	Biofunctional Silicon Nanoparticles by Means of Thiolâ€Ene Click Chemistry. Chemistry - an Asian Journal, 2011, 6, 2776-2786.	1.7	68
8	Ultralow Adhesion and Friction of Fluoro-Hydro Alkyne-Derived Self-Assembled Monolayers on H-Terminated Si(111). Langmuir, 2012, 28, 17690-17700.	1.6	60
9	Water-repairable zwitterionic polymer coatings for anti-biofouling surfaces. Journal of Materials Chemistry B, 2017, 5, 6728-6733.	2.9	58
10	Kovalente OberflÃ e henmodifikationen von Oxiden. Angewandte Chemie, 2014, 126, 6438-6474.	1.6	50
11	Universal Calibration of Computationally Predicted N 1s Binding Energies for Interpretation of XPS Experimental Measurements. Langmuir, 2017, 33, 10792-10799.	1.6	49
12	Immuno-capture of extracellular vesicles for individual multi-modal characterization using AFM, SEM and Raman spectroscopy. Lab on A Chip, 2019, 19, 2526-2536.	3.1	48
13	Quantitative and Orthogonal Formation and Reactivity of SuFEx Platforms. Chemistry - A European Journal, 2018, 24, 10550-10556.	1.7	37
14	Mono-Fluorinated Alkyne-Derived SAMs on Oxide-Free Si(111) Surfaces: Preparation, Characterization and Tuning of the Si Workfunction. Langmuir, 2013, 29, 570-580.	1.6	36
15	Covalently Attached Organic Monolayers onto Silicon Carbide from 1-Alkynes: Molecular Structure and Tribological Properties. Langmuir, 2013, 29, 4019-4031.	1.6	32
16	Hexadecadienyl Monolayers on Hydrogen-Terminated Si(111): Faster Monolayer Formation and Improved Surface Coverage Using the Enyne Moiety. Langmuir, 2012, 28, 6577-6588.	1.6	31
17	One-Pot Gram-Scale Synthesis of Hydrogen-Terminated Silicon Nanoparticles. Chemistry of Materials, 2018, 30, 6503-6512.	3.2	30
18	Configurationally Chiral SuFExâ€Based Polymers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28

SIDHARAM P PUJARI

#	Article	IF	CITATIONS
19	Organic Monolayers by B(C ₆ F ₅) ₃ -Catalyzed Siloxanation of Oxidized Silicon Surfaces. Langmuir, 2017, 33, 2185-2193.	1.6	23
20	Change in Tetracene Polymorphism Facilitates Triplet Transfer in Singlet Fission-Sensitized Silicon Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 8703-8709.	2.1	19
21	Highly Porous Nanocrystalline UiO-66 Thin Films via Coordination Modulation Controlled Step-by-Step Liquid-Phase Growth. Crystal Growth and Design, 2019, 19, 1738-1747.	1.4	18
22	Lightâ€Activated Electroactive Moleculeâ€Based Memory Microcells Confined on a Silicon Surface. Angewandte Chemie - International Edition, 2013, 52, 12024-12027.	7.2	17
23	Local Light-Induced Modification of the Inside of Microfluidic Glass Chips. Langmuir, 2016, 32, 2389-2398.	1.6	16
24	Tribology and Stability of Organic Monolayers on CrN: A Comparison among Silane, Phosphonate, Alkene, and Alkyne Chemistries. Langmuir, 2013, 29, 10405-10415.	1.6	15
25	Controlled Fabrication of Polypyrrole Surfaces with Overhang Structures by Colloidal Templating. ACS Applied Materials & Interfaces, 2015, 7, 16507-16517.	4.0	15
26	Fast room-temperature functionalization of silicon nanoparticles using alkyl silanols. Faraday Discussions, 2020, 222, 82-94.	1.6	14
27	Effect of Doping Density on the Charge Rearrangement and Interface Dipole at the Molecule–Silicon Interface. Journal of Physical Chemistry C, 2013, 117, 22422-22427.	1.5	13
28	Mild and Selective C–H Activation of COC Microfluidic Channels Allowing Covalent Multifunctional Coatings. ACS Applied Materials & Interfaces, 2017, 9, 16644-16650.	4.0	13
29	High-Density Modification of H-Terminated Si(111) Surfaces Using Short-Chain Alkynes. Langmuir, 2017, 33, 14599-14607.	1.6	13
30	One-Step Generation of Reactive Superhydrophobic Surfaces via SiHCl3-Based Silicone Nanofilaments. Langmuir, 2018, 34, 13505-13513.	1.6	12
31	Fluorinated alkyne-derived monolayers on oxide-free silicon nanowires via one-step hydrosilylation. Applied Surface Science, 2016, 387, 1202-1210.	3.1	11
32	Approach Matters: The Kinetics of Interfacial Inverseâ€Electron Demand Diels–Alder Reactions. Chemistry - A European Journal, 2017, 23, 13015-13022.	1.7	11
33	A method to detect triplet exciton transfer from singlet fission materials into silicon solar cells: Comparing different surface treatments. Journal of Chemical Physics, 2020, 152, 114201.	1.2	11
34	Highly wear-resistant ultra-thin per-fluorinated organic monolayers on silicon(111) surfaces. Applied Surface Science, 2013, 287, 159-164.	3.1	10
35	Mild Photochemical Biofunctionalization of Glass Microchannels. Langmuir, 2017, 33, 8624-8631.	1.6	10
36	Selective Positioning of Nanosized Metal–Organic Framework Particles at Patterned Substrate Surfaces. Chemistry of Materials, 2020, 32, 9954-9963.	3.2	10

Sidharam P Pujari

#	Article	IF	CITATIONS
37	Organic Monolayers from 1-Alkynes Covalently Attached to Chromium Nitride: Alkyl and Fluoroalkyl Termination. Langmuir, 2013, 29, 10393-10404.	1.6	9
38	Effect of α-Heteroatoms on the Formation of Alkene-Derived Monolayers on H–Si(111): A Combined Experimental and Theoretical Study. Langmuir, 2015, 31, 8318-8327.	1.6	8
39	Highly Polymerâ€Repellent yet Atomically Flat Surfaces Based on Organic Monolayers with a Single Fluorine Atom. Advanced Materials Interfaces, 2016, 3, 1500514.	1.9	7
40	Effect of Internal Heteroatoms on Level Alignment at Metal/Molecular Monolayer/Si Interfaces. Journal of Physical Chemistry C, 2018, 122, 3312-3325.	1.5	7
41	Organosilicon uptake by biological membranes. Communications Biology, 2021, 4, 704.	2.0	4
42	Configurationally Chiral SuFExâ€Based Polymers. Angewandte Chemie, 2022, 134, .	1.6	4
43	Lightâ€Activated Electroactive Moleculeâ€Based Memory Microcells Confined on a Silicon Surface. Angewandte Chemie, 2013, 125, 12246-12249.	1.6	3
44	Surface Heterogeneous Nucleation-Mediated Release of Beta-Carotene from Porous Silicon. Nanomaterials, 2020, 10, 1659.	1.9	1
45	Efficient Chemical Surface Modification Protocol on SiO2 Transducers Applied to MMP9 Biosensing. Sensors, 2021, 21, 8156.	2.1	1
46	Dynamics of Singlet Fission in Tetracene and Triplet Transfer to Silicon. , 0, , .		0
47	Dynamics of Singlet Fission in Tetracene and Triplet Transfer to Silicon. , 0, , .		0
48	Microsphere Peptide-Based Immunoassay for the Detection of Recombinant Bovine Somatotropin in Injection Preparations. Biosensors, 2022, 12, 138.	2.3	0