Mojtaba Ghadiri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7410120/publications.pdf

Version: 2024-02-01

263 papers 9,125 citations

52 h-index 82 g-index

278 all docs

278 docs citations

times ranked

278

5140 citing authors

#	Article	IF	CITATIONS
1	Modelling the compaction of plastic particle packings. Computational Particle Mechanics, 2022, 9, 45-52.	1.5	6
2	Microstructure and impedance spectroscopy of high density holmium hafnate (Ho2Hf2O7) from nanoparticulate compacts. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 265, 114989.	1.7	3
3	Granule attrition by coupled particle impact and shearing. Advanced Powder Technology, 2021, 32, 204-210.	2.0	3
4	Influence of holdup on gas and particle flow patterns in a spiral jet mill. Powder Technology, 2021, 377, 233-243.	2.1	12
5	Analysis of particle dynamics in a pin mill by Discrete Element Method. EPJ Web of Conferences, 2021, 249, 07010.	0.1	1
6	Effect of strain rate on powder flow behaviour using ball indentation method. Powder Technology, 2021, 380, 567-573.	2.1	3
7	Particle breakability assessment using an Aero S disperser. International Journal of Pharmaceutics, 2021, 597, 120365.	2.6	4
8	Computational analysis of triboelectrification due to aerodynamic powder dispersion. Powder Technology, 2021, 382, 491-504.	2.1	13
9	Numerical Simulation of Particle Dynamics in a Spiral Jet Mill via Coupled CFD-DEM. Pharmaceutics, 2021, 13, 937.	2.0	8
10	Rheology of a dense granular bed penetrated by a rotating impeller. Powder Technology, 2021, 386, 60-69.	2.1	4
11	Assessing powder flowability at low stresses using ball indentation method: Evaluation of constraint factor. Powder Technology, 2021, 387, 287-294.	2.1	1
12	Discrete element modelling of ribbon milling: A comparison of approaches. Powder Technology, 2021, 388, 63-69.	2.1	1
13	Effect of Mixer Type on Particle Coating by Magnesium Stearate for Friction and Adhesion Modification. Pharmaceutics, 2021, 13, 1211.	2.0	4
14	Analysis of contact force distribution in a moving granule bed subjected to shear deformation by a set of rollers. Advanced Powder Technology, 2021, 32, 3016-3022.	2.0	2
15	Influence of mechanical properties on milling of amorphous and crystalline silica-based solids. Powder Technology, 2021, 391, 239-252.	2.1	1
16	Stress and input energy analyses of shearing a particle bed under a centrifugal field. Powder Technology, 2021, 394, 575-583.	2.1	2
17	Effect of grinding nozzles pressure on particle and fluid flow patterns in a spiral jet mill. Powder Technology, 2021, 394, 439-447.	2.1	5
18	Analysis of hold-up and grinding pressure in a spiral jet mill using CFD-DEM. EPJ Web of Conferences, 2021, 249, 12004.	0.1	0

#	Article	IF	Citations
19	Understanding stress-induced disorder and breakage in organic crystals: beyond crystal structure anisotropy. Chemical Science, 2021, 12, 14270-14280.	3.7	5
20	Effect of particle roughness on the bulk deformation using coupled boundary element and discrete element methods. Computational Particle Mechanics, 2020, 7, 603-613.	1.5	15
21	Cohesive Powder Flow: Trends and Challenges in Characterisation and Analysis. KONA Powder and Particle Journal, 2020, 37, 3-18.	0.9	38
22	Numerical simulation of particle flow and segregation during roller spreading process in additive manufacturing. Powder Technology, 2020, 364, 811-821.	2.1	59
23	Drop-interface electrocoalescence mode transition under a direct current electric field. Chemical Engineering Science, 2020, 213, 115360.	1.9	32
24	Impact breakage of acicular crystals. Powder Technology, 2020, 361, 651-662.	2.1	4
25	Prediction of flowability of cohesive powder mixtures at high strain rate conditions by discrete element method. Powder Technology, 2020, 372, 59-67.	2.1	8
26	Effect of gas-particle interaction on roller spreading process in additive manufacturing. Powder Technology, 2020, 372, 466-476.	2.1	25
27	Zonal modelling of a counter-current spray drying tower. Chemical Engineering Research and Design, 2020, 155, 180-199.	2.7	4
28	Influence of processing conditions on the ionic conductivity of holmium zirconate (Ho2Zr2O7). Ceramics International, 2020, 46, 11508-11514.	2.3	6
29	Deformation of 3D printed agglomerates: Multiscale experimental tests and DEM simulation. Chemical Engineering Science, 2020, 217, 115526.	1.9	28
30	Environmentally sustainable facile synthesis of nanocrystalline holmium hafnate (Ho2Hf2O7): Promising new oxide-ion conducting solid electrolyte. SN Applied Sciences, 2020, 2, 1.	1.5	5
31	Analysis of screw feeding of faceted particles by discrete element method. Powder Technology, 2020, 367, 474-486.	2.1	14
32	A simple method for assessing powder spreadability for additive manufacturing. Powder Technology, 2020, 367, 671-679.	2.1	48
33	Effect of hydrolyzed polyacrylamide used in polymer flooding on droplet–interface electro-coalescence: Variation of critical electric field strength of partial coalescence. Separation and Purification Technology, 2019, 227, 115737.	3.9	19
34	Electrocoalescence of water droplets in sunflower oil using a novel electrode geometry. Chemical Engineering Research and Design, 2019, 152, 226-241.	2.7	19
35	Development of a methodology for predicting particle attrition in a cyclone by CFD-DEM. Powder Technology, 2019, 357, 21-32.	2.1	19
36	Structural study of holmium zirconate nanoparticles obtained through carbon neutral sol-gel process. Thermochimica Acta, 2019, 676, 120-129.	1.2	6

#	Article	IF	Citations
37	Assessment of impact breakage of carbamazepine dihydrate due to aerodynamic dispersion. International Journal of Pharmaceutics, 2019, 572, 118780.	2.6	5
38	DEM analysis of the effect of particle shape, cohesion and strain rate on powder rheometry. Powder Technology, 2019, 342, 653-663.	2.1	39
39	Numerical simulation of powder flow during spreading in additive manufacturing. Powder Technology, 2019, 342, 801-807.	2.1	70
40	Evaluation of a new dispersion technique for assessing triboelectric charging of powders. International Journal of Pharmaceutics, 2018, 543, 151-159.	2.6	15
41	Modelling of auto-agglomeration of cohesive powders. Chemical Engineering Research and Design, 2018, 133, 137-141.	2.7	5
42	Promising solid electrolyte material for an IT-SOFC: crystal structure of the cerium gadolinium holmium oxide Ce _{0.8} Gd _{0.1} Ho _{0.1} O _{1.9} between 295 and 1023â€K. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 236-239.	0.2	5
43	Nonlinear Vibration Analysis of a Cable Carrying Moving Mass-Spring-Damper. International Journal of Structural Stability and Dynamics, 2018, 18, 1850030.	1.5	6
44	Impact breakage of pharmaceutical tablets. International Journal of Pharmaceutics, 2018, 536, 370-376.	2.6	18
45	Free vibration and critical angular velocity of a rotating variable thickness two-directional FG circular microplate. Microsystem Technologies, 2018, 24, 1525-1543.	1.2	28
46	Analysis of pin milling of pharmaceutical materials. International Journal of Pharmaceutics, 2018, 552, 394-400.	2.6	12
47	Experimental study of the deformation and breakage of 3D printed agglomerates: Effects of packing density and inter-particle bond strength. Powder Technology, 2018, 340, 299-310.	2.1	18
48	Experimental evaluation of the effect of particle properties on the segregation of ternary powder mixtures. Powder Technology, 2018, 336, 240-254.	2.1	16
49	Jamming during particle spreading in additive manufacturing. Powder Technology, 2018, 338, 253-262.	2.1	151
50	A methodology for calibration of DEM input parameters in simulation of segregation of powder mixtures, a special focus on adhesion. Powder Technology, 2018, 339, 789-800.	2.1	32
51	Critical electric field strength for partial coalescence of droplets on oil–water interface under DC electric field. Chemical Engineering Research and Design, 2018, 136, 83-93.	2.7	28
52	CFD modeling of a pilot-scale countercurrent spray drying tower for the manufacture of detergent powder. Drying Technology, 2017, 35, 281-299.	1.7	27
53	Ball indentation on powder beds for assessing powder flowability: Analysis of operation window. Powder Technology, 2017, 310, 300-306.	2.1	26
54	Analysis of powder rheometry of FT4: Effect of air flow. Chemical Engineering Science, 2017, 162, 141-151.	1.9	30

#	Article	IF	Citations
55	Assessment of surface caking of powders using the ball indentation method. International Journal of Pharmaceutics, 2017, 521, 61-68.	2.6	15
56	A review of bulk powder caking. Powder Technology, 2017, 313, 389-401.	2.1	118
57	Inter-particle coating variability in a rotary batch seed coater. Chemical Engineering Research and Design, 2017, 120, 92-101.	2.7	12
58	Stress analysis of an agitated particle bed with different particle aspect ratios by the discrete element method. EPJ Web of Conferences, 2017, 140, 06022.	0.1	0
59	Analysis of triboelectric charging of particles due to aerodynamic dispersion by a pulse of pressurised air jet. Advanced Powder Technology, 2017, 28, 2735-2740.	2.0	7
60	Droplet deformation under pulsatile electric fields. Chemical Engineering Research and Design, 2017, 127, 180-188.	2.7	36
61	Relationship between surface area coverage of flow-aids and flowability of cohesive particles. Powder Technology, 2017, 322, 417-427.	2.1	38
62	Assessment of Near-Infrared (NIR) spectroscopy for segregation measurement of low content level ingredients. Powder Technology, 2017, 320, 143-154.	2.1	11
63	Numerical analysis of air effect on the powder flow dynamics in the FT4 Powder Rheometer. EPJ Web of Conferences, 2017, 140, 03036.	0.1	3
64	Fluid-particle energy transfer in spiral jet milling. EPJ Web of Conferences, 2017, 140, 09040.	0.1	8
65	Analysis of powder rheometry of FT4: Effect of particle shape. Chemical Engineering Science, 2017, 173, 374-383.	1.9	39
66	The effect of particle shape on predicted segregation in binary powder mixtures. Powder Technology, 2017, 319, 313-322.	2.1	50
67	Residence time distribution of glass ballotini in isothermal swirling flows in a counter-current spray drying tower. Powder Technology, 2017, 305, 809-815.	2.1	12
68	3D printed agglomerates for granule breakage tests. Powder Technology, 2017, 306, 103-112.	2.1	29
69	Stress and strain rate analysis of the FT4 Powder Rheometer. EPJ Web of Conferences, 2017, 140, 03034.	0.1	6
70	Effect of Structure on Strength of Agglomerates using Distinct Element Method. EPJ Web of Conferences, 2017, 140, 15015.	0.1	2
71	CFD-DEM Analysis of Particle Attrition in a Jet in a Fluidised Bed. EPJ Web of Conferences, 2017, 140, 07017.	0.1	5
72	Numerical Analysis of the Effect of Particle Shape and Adhesion on the Segregation of Powder Mixtures. EPJ Web of Conferences, 2017, 140, 06024.	0.1	5

#	Article	IF	Citations
73	Distinct element analysis of inter-particle coating variability in a batch seed coater. EPJ Web of Conferences, 2017, 140, 15035.	0.1	О
74	Analysis of Minor Component Segregation in Ternary Powder Mixtures. EPJ Web of Conferences, 2017, 140, 13013.	0.1	2
75	Linear dynamics modelling of droplet deformation in a pulsatile electric field. Chemical Engineering Research and Design, 2016, 114, 162-170.	2.7	16
76	Impact attrition of spray-dried burkeite particles. Powder Technology, 2016, 304, 2-7.	2.1	15
77	Analysis of partial electrocoalescence by Level-Set and finite element methods. Chemical Engineering Research and Design, 2016, 114, 180-189.	2.7	32
78	Analysis of milling of dry compacted ribbons by distinct element method. Chemical Engineering Science, 2016, 149, 204-214.	1.9	12
79	Effect of particle shape on flow in discrete element method simulation of a rotary batch seed coater. Powder Technology, 2016, 296, 29-36.	2.1	79
80	A method for grindability testing using the Scirocco disperser. International Journal of Pharmaceutics, 2016, 501, 65-74.	2.6	13
81	A power series for vibration of a rotating nanobeam with considering thermal effect. Mechanics of Advanced Materials and Structures, 2016, 23, 1414-1420.	1.5	30
82	Auto-granulation of Fine Cohesive Powder by Mechanical Vibration. Procedia Engineering, 2015, 102, 72-80.	1.2	20
83	Electrocoalescence of water drop trains in oil under constant and pulsatile electric fields. Chemical Engineering Research and Design, 2015, 104, 658-668.	2.7	58
84	Attrition of paracetamol and aspirin under bulk shear deformation. Chemical Engineering Science, 2015, 125, 13-19.	1.9	6
85	A comparative analysis of particle tracking in a mixer by discrete element method and positron emission particle tracking. Powder Technology, 2015, 270, 569-574.	2.1	13
86	Electrostatic phase separation: A review. Chemical Engineering Research and Design, 2015, 96, 177-195.	2.7	181
87	Impact strength distribution of placebo enzyme granules. Powder Technology, 2015, 285, 68-73.	2.1	5
88	Effect of mill type on the size reduction and phase transformation of gamma alumina. Chemical Engineering Science, 2015, 134, 774-783.	1.9	107
89	Analysis of the dynamics of the FT4 powder rheometer. Powder Technology, 2015, 285, 123-127.	2.1	91
90	CFD Simulation of a Counter-current Spray Drying Tower with Stochastic Treatment of Particle-wall Collision. Procedia Engineering, 2015, 102, 1284-1294.	1.2	13

#	Article	IF	Citations
91	Comparison of cohesive powder flowability measured by Schulze Shear Cell, Raining Bed Method, Sevilla Powder Tester and new Ball Indentation Method. Powder Technology, 2015, 286, 807-816.	2.1	31
92	Effect of mechanical vibration on the size and microstructure of titania granules produced by auto-granulation. Powder Technology, 2015, 286, 223-229.	2.1	6
93	Particle Breakage in a Scirocco Disperser. Powder Technology, 2015, 285, 138-145.	2.1	11
94	Effect of surfactants on the deformation and break-up of an aqueous drop in oils under high electric field strengths. Journal of Petroleum Science and Engineering, 2015, 125, 38-47.	2.1	24
95	Numerical analysis of strain rate sensitivity in ball indentation on cohesive powder Beds. Chemical Engineering Science, 2015, 123, 92-98.	1.9	11
96	Numerical methods for solving singular integral equations obtained by fracture mechanical analysis of cracked wedge. Applied Mathematics and Mechanics (English Edition), 2014, 35, 311-324.	1.9	0
97	A linear model of elasto-plastic and adhesive contact deformation. Granular Matter, 2014, 16, 151-162.	1.1	62
98	A one-dimensional plug-flow model of a counter-current spray drying tower. Chemical Engineering Research and Design, 2014, 92, 826-841.	2.7	42
99	lon-exchange kinetics and thermal decomposition characteristics of Fe2+-exchanged alginic acid membrane for the formation of iron oxide nanoparticles. Journal of Materials Science, 2014, 49, 7151-7155.	1.7	10
100	Electro-coalescence of water drops in oils under pulsatile electric fields. Chemical Engineering Science, 2014, 120, 130-142.	1.9	81
101	Analysis of bonded anisotropic wedges with interface crack under anti-plane shear loading. Applied Mathematics and Mechanics (English Edition), 2014, 35, 637-654.	1.9	2
102	Drop test: A new method to measure the particle adhesion force. Powder Technology, 2014, 264, 236-241.	2.1	53
103	Instantaneous Monitoring of Drill Bit Wear and Specific Energy as a Criteria for the Appropriate Time for Pulling Out Worn Bits. , 2014, , .		2
104	Analysis of seeded granulation in high shear granulators by discrete element method. Powder Technology, 2013, 238, 50-55.	2.1	31
105	Analysis of aerodynamic dispersion of cohesive clusters. Chemical Engineering Science, 2013, 86, 146-150.	1.9	13
106	Tribo-electrification of powders due to dispersion. Powder Technology, 2013, 250, 75-83.	2.1	9
107	Influence of measurement cell size on predicted attrition by the Distinct Element Method. Powder Technology, 2013, 236, 100-106.	2.1	8
108	Further investigations on the influence of scale-up of a high shear granulator on the granule properties. Particuology, 2013, 11, 627-635.	2.0	5

#	Article	IF	Citations
109	Analysis of ball indentation on cohesive powder beds using distinct element modelling. Powder Technology, 2013, 233, 80-90.	2.1	33
110	Strength and structure of granules produced in continuous granulators. Powder Technology, 2013, 233, 227-233.	2.1	13
111	A new environmental bulk powder caking tester. Powder Technology, 2013, 249, 323-329.	2.1	26
112	The flowability and aerodynamic dispersion of cohesive powders. Powder Technology, 2013, 240, 88-94.	2.1	14
113	Tribo-electric charging particle in a shaker. , 2013, , .		3
114	Assessing flowability of small quantities of cohesive powder using distinct element modelling. , 2013, ,		1
115	A new contact model for modelling of elastic-plastic-adhesive spheres in distinct element method., 2013,,.		2
116	Analysis of seed processing by the distinct element method. , 2013, , .		0
117	The influence of aspect ratio and roughness on flowability. AIP Conference Proceedings, 2013, , .	0.3	9
118	Prediction of bulk particle breakage due to naturally formed shear bands. , 2013, , .		0
119	A mechanistic analysis of bulk powder caking. , 2013, , .		0
120	Novel Ionâ€Exchange Process for the Preparation of Metal Oxide Nanopowders from Sodium Alginate. Journal of the American Ceramic Society, 2012, 95, 3124-3129.	1.9	21
121	Size measurement of dry ice particles produced from liquid carbon dioxide. Journal of Aerosol Science, 2012, 48, 1-9.	1.8	46
122	Synthesis and characterization of CexGd1â^'xO2â^'Î^ nanopowders employing an alginate mediated ion-exchange process. Chemical Engineering Journal, 2012, 198-199, 149-153.	6.6	22
123	X-Ray micro-tomography of freeze dried nickel alginate beads and transformation into NiO nanopowders. RSC Advances, 2012, 2, 9993.	1.7	23
124	Solâ€Gel Production of <scp><scp>Ce< scp>< scp><scp>>(scp>< scp>< scp>_{>0.2< sub><scp>< scp>< sc</scp>}</scp></scp></scp>	scp> <sub< td=""><td>>1.9</td></sub<>	>1.9
125	Tribo-electrification of active pharmaceutical ingredients and excipients. Powder Technology, 2012, 217, 427-434.	2.1	56
126	Maltose and pectin assisted sol–gel production of Ce0.8Gd0.2O1.9 solid electrolyte nanopowders for solid oxide fuel cells. Journal of Materials Chemistry, 2011, 21, 16494.	6.7	30

#	Article	IF	Citations
127	Tribo-Electrification and Associated Segregation of Pharmaceutical Bulk Powders. KONA Powder and Particle Journal, 2011, 29, 208-223.	0.9	25
128	Prediction of attrition in agitated particle beds. Chemical Engineering Science, 2011, 66, 4757-4770.	1.9	40
129	The effect of interfacial tension on secondary drop formation in electro-coalescence of water droplets in oil. Chemical Engineering Science, 2011, 66, 5330-5337.	1.9	93
130	Progress in low temperature hydrogen production with simultaneous CO2 abatement. Chemical Engineering Research and Design, 2011, 89, 1774-1782.	2.7	26
131	Effects of process parameters on granules properties produced in a high shear granulator. Chemical Engineering Research and Design, 2011, 89, 512-518.	2.7	66
132	Analysis of granule breakage in a rotary mixing drum: Experimental study and distinct element analysis. Powder Technology, 2011, 210, 175-180.	2.1	25
133	Electro-coalescence of an aqueous droplet at an oil–water interface. Chemical Engineering and Processing: Process Intensification, 2011, 50, 338-344.	1.8	76
134	Mechanistic analysis and computer simulation of the aerodynamic dispersion of loose aggregates. Chemical Engineering Research and Design, 2011, 89, 519-525.	2.7	33
135	The breakage behaviour of Aspirin under quasi-static indentation and single particle impact loading: Effect of crystallographic anisotropy. International Journal of Pharmaceutics, 2011, 411, 49-63.	2.6	53
136	A comparative study on hydrogen production from steam-glycerol reforming: thermodynamics and experimental. Renewable Energy, 2011, 36, 779-788.	4.3	88
137	Seeded granulation. Powder Technology, 2011, 206, 53-62.	2.1	24
138	Analysis of particle motion in a paddle mixer using Discrete Element Method (DEM). Powder Technology, 2011, 206, 189-194.	2.1	78
139	Effect of temperature and humidity on the breakage behaviour of Aspirin and sucrose particles. Powder Technology, 2010, 201, 248-252.	2.1	10
140	Triboelectric charging of powders: A review. Chemical Engineering Science, 2010, 65, 5781-5807.	1.9	469
141	Steam reforming of crude glycerol with in situ CO2 sorption. Bioresource Technology, 2010, 101, 2436-2442.	4.8	120
142	Analysis of anisotropic sector with a radial crack under anti-plane shear loading. International Journal of Solids and Structures, 2010, 47, 1030-1039.	1.3	11
143	Particle Breakage in Agitated Dryers. , 2009, , .		10
144	Mechanistic Analysis and Computer Simulation of the Aerodynamic Dispersion of Loose Aggregates: Effect of Surface Energy., 2009,,.		1

#	Article	IF	Citations
145	Analysis of Tribo-Electric Charging of Spherical Beads Using Distinct Element Method., 2009,,.		6
146	Effect of Primary Particle Size on the Granule Properties. , 2009, , .		0
147	Analysis of Segregation of Binary Mixtures of Particulate Solids. , 2009, , .		0
148	Mechanical Failure of Grains in Sheared Granular Media: Effect of Size Ratio., 2009,,.		3
149	Analysis of bonded finite wedges with an interfacial crack under antiplane shear loading. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2009, 223, 2213-2223.	1.1	5
150	Impact of surface tension and viscosity on solids motion in a conical high shear mixer granulator. AICHE Journal, 2009, 55, 3088-3098.	1.8	8
151	Analysis of a Simple Test Device for Triboâ€Electric Charging of Bulk Powders. Particle and Particle Systems Characterization, 2009, 26, 7-16.	1.2	23
152	Thermodynamic analyses of adsorption-enhanced steam reforming of glycerol for hydrogen production. International Journal of Hydrogen Energy, 2009, 34, 7208-7222.	3.8	110
153	Effect of granulation scale-up on the strength of granules. Powder Technology, 2009, 189, 304-312.	2.1	55
154	Characterisation of granule structure and strength made in a high shear granulator. Powder Technology, 2009, 192, 184-194.	2.1	79
155	Modelling of dense and complex granular flow in high shear mixer granulator—A CFD approach. Chemical Engineering Science, 2009, 64, 3622-3632.	1.9	32
156	Hydrogen production by sorption-enhanced steam reforming of glycerol. Bioresource Technology, 2009, 100, 3540-3547.	4.8	168
157	Aerodynamic dispersion of cohesive powders: A review of understanding and technology. Advanced Powder Technology, 2009, 20, 4-16.	2.0	99
158	On the relative importance of the kinetic and frictional contributions to granular motion in an annular Couette flow. Chemical Engineering Science, 2008, 63, 1733-1739.	1.9	11
159	Assessment of the kinetic–frictional model for dense granular flow. Particuology, 2008, 6, 50-58.	2.0	14
160	Granular flow fields in vertical high shear mixer granulators. AICHE Journal, 2008, 54, 415-426.	1.8	10
161	Characterisation of flowability of cohesive powders by testing small quantities of weak compacts. Particuology, 2008, 6, 282-285.	2.0	20
162	Effect of scale of operation on granule strength in high shear granulators. Chemical Engineering Science, 2008, 63, 915-923.	1.9	48

#	Article	IF	Citations
163	Influence of interface energy of primary particles on the deformation and breakage behaviour of agglomerates sheared in a powder bed. Chemical Engineering Science, 2008, 63, 5593-5599.	1.9	3
164	Analysis of pulsating electric signals generated in gas–solids pipe flow. Chemical Engineering Science, 2008, 63, 1353-1360.	1.9	35
165	Scale-up of High-Shear Mixer Granulators. KONA Powder and Particle Journal, 2008, 26, 190-204.	0.9	16
166	New instrument for tribocharge measurement due to single particle impacts. Review of Scientific Instruments, 2007, 78, 024706.	0.6	23
167	Chapter 14 Analysis of Milling and the Role of Feed Properties. Handbook of Powder Technology, 2007, , 605-634.	0.1	4
168	Chapter 25 Attrition in Fluidised Beds. Handbook of Powder Technology, 2007, 12, 1019-1053.	0.1	6
169	Chapter 19 Analysis of Agglomerate Breakage. Handbook of Powder Technology, 2007, 12, 837-872.	0.1	9
170	Analysis of enzyme dust formation in detergent manufacturing plants. Advanced Powder Technology, 2007, 18, 53-67.	2.0	9
171	Solids motion in a conical frustum-shaped high shear mixer granulator. Chemical Engineering Science, 2007, 62, 756-765.	1.9	19
172	Triboelectrification of pharmaceutical powders by particle impact. International Journal of Pharmaceutics, 2007, 334, 149-155.	2.6	104
173	Electro-hydrodynamic separation of aqueous drops from flowing viscous oil. Journal of Petroleum Science and Engineering, 2007, 55, 146-155.	2.1	33
174	Milling of sucrose. Powder Technology, 2007, 174, 14-17.	2.1	4
175	Solids motion of calcium carbonate particles in a high shear mixer granulator: A comparison between dry and wet conditions. Powder Technology, 2007, 177, 1-11.	2.1	6
176	Characterisation of Flowability of Loosely Compacted Cohesive Powders by Indentation. Particle and Particle Systems Characterization, 2007, 24, 117-123.	1.2	47
177	Modeling of agglomerate behavior under shear deformation: effect of velocity field of a high shear mixer granulator on the structure of agglomerates. Advanced Powder Technology, 2007, 18, 803-811.	2.0	14
178	Computer simulation of the effect of contact stiffness and adhesion on the fluidization behaviour of powders. Chemical Engineering Science, 2007, 62, 184-194.	1.9	57
179	Effect of size ratio on the behaviour of agglomerates embedded in a bed of particles subjected to shearing: DEM analysis. Chemical Engineering Science, 2007, 62, 935-942.	1.9	32
180	Hardness, Stiffness, and Toughness of Particles. , 2006, , .		0

#	Article	IF	Citations
181	Measurement of Charge Transfer due to Single Particle Impact. Particle and Particle Systems Characterization, 2006, 23, 133-137.	1.2	47
182	Characterization of the Dispersion Behavior of Powders in Liquids. Particle and Particle Systems Characterization, 2006, 23, 154-158.	1.2	29
183	Evaluation of the single contact electrical clamping force. Chemical Engineering Science, 2006, 61, 2290-2300.	1.9	10
184	Solids behaviour in a dilute gas–solid two-phase mixture flowing through monolith channels. Chemical Engineering Science, 2006, 61, 1561-1570.	1.9	9
185	Mechanistic analysis and computer simulation of impact breakage of agglomerates: Effect of surface energy. Chemical Engineering Science, 2006, 61, 2476-2481.	1.9	101
186	Distinct element analysis of attrition of granular solids under shear deformation. Chemical Engineering Science, 2006, 61, 5991-6001.	1.9	41
187	Electrostatics in powders. Chemical Engineering Science, 2006, 61, 2191.	1.9	0
188	Particle Impact Breakage. , 2006, , .		8
189	Hardness, Stiffness, and Toughness of Particles. , 2006, , 53-65.		0
190	Particle Impact Breakage. , 2006, , 205-212.		3
191	Immobilized copper(II) complexes on montmorillonite and MCM-41 as selective catalysts for epoxidation of alkenes. Journal of Molecular Catalysis A, 2005, 233, 127-131.	4.8	35
192	Hydrodynamics of gas–solid two-phase mixtures flowing upward through packed beds. Powder Technology, 2005, 153, 13-22.	2.1	14
193	Vertical upward flow of gas–solid two-phase mixtures through monolith channels. Powder Technology, 2005, 153, 51-58.	2.1	9
194	Analysis of flowability of cohesive powders using Distinct Element Method. Powder Technology, 2005, 158, 51-57.	2.1	33
195	Analysis of catalyst particle strength by impact testing: The effect of manufacturing process parameters on the particle strength. Powder Technology, 2005, 160, 67-80.	2.1	24
196	Analysis of the milling rate of pharmaceutical powders using the Distinct Element Method (DEM). Chemical Engineering Science, 2005, 60, 1441-1448.	1.9	41
197	Single and bulk compressions of soft granules: Experimental study and DEM evaluation. Chemical Engineering Science, 2005, 60, 3993-4004.	1.9	97
198	Solids behaviour in a gas–solid two-phase mixture flowing through a packed particle bed. Chemical Engineering Science, 2005, 60, 5231-5239.	1.9	44

#	Article	IF	Citations
199	Effect of temperature on the energy utilisation in quasi-static crushing of \hat{l} ±-lactose monohydrate. Powder Technology, 2004, 141, 239-243.	2.1	9
200	Fluidised-bed jet milling of pharmaceutical powders. Powder Technology, 2004, 141, 233-238.	2.1	39
201	Distinct element analysis and experimental evaluation of the Heckel analysis of bulk powder compression. Powder Technology, 2004, 141, 251-261.	2.1	78
202	Analysis of impact damage of agglomerates: effect of impact angle. Powder Technology, 2004, 143-144, 97-109.	2.1	61
203	Effect of granule morphology on breakage behaviour during compression. Powder Technology, 2004, 143-144, 84-96.	2.1	85
204	Development of a novel approach towards predicting the milling behaviour of pharmaceutical powders. European Journal of Pharmaceutical Sciences, 2004, 23, 327-336.	1.9	50
205	Application of X-ray microtomography to numerical simulations of agglomerate breakage by distinct element method. Advanced Powder Technology, 2004, 15, 447-457.	2.0	16
206	Shear deformation of binary mixtures of dry particulate solids. Advanced Powder Technology, 2004, 15, 687-697.	2.0	15
207	Energy-based analysis of milling α-lactose monohydrate. Journal of Pharmaceutical Sciences, 2004, 93, 886-895.	1.6	15
208	Flow of a gas–solid two-phase mixture through a packed bed. Chemical Engineering Science, 2004, 59, 3071-3079.	1.9	38
209	Use of the JKR Model for Calculating Adhesion between Rough Surfaces. Langmuir, 2004, 20, 9571-9576.	1.6	34
210	Distinct element analysis of the effect of temperature on the bulk crushing of \hat{l}_{\pm} -lactose monohydrate. Advanced Powder Technology, 2003, 14, 427-434.	2.0	5
211	Weibull Analysis of Quasi-Static Crushing Strength of Catalyst Particles. Chemical Engineering Research and Design, 2003, 81, 953-962.	2.7	43
212	Mitigation of segregation and stratification in bulk granular mixtures by the electroclamping method. Powder Technology, 2003, 135-136, 92-104.	2.1	6
213	Effect of electrostatic field on dripping of highly conductive and viscous liquids. Powder Technology, 2003, 135-136, 361-366.	2.1	21
214	Effect of structural characteristics on impact breakage of agglomerates. Powder Technology, 2003, 130, 428-435.	2.1	59
215	Effect of the impact angle on the breakage of agglomerates: a numerical study using DEM. Powder Technology, 2003, 130, 132-137.	2.1	138
216	The Effects of Operating Conditions on the Milling of Microcrystalline Cellulose. Chemical Engineering and Technology, 2003, 26, 185-190.	0.9	16

#	Article	IF	Citations
217	Motion, deformation and break-up of aqueous drops in oils under high electric field strengths. Chemical Engineering and Processing: Process Intensification, 2003, 42, 259-272.	1.8	113
218	Adaptive finite element analysis of electrostatic interactions: a sphere between two charged walls and two isolated spheres. Chemical Engineering and Processing: Process Intensification, 2003, 42, 847-856.	1.8	3
219	The behaviour of a liquid–liquid interface and drop-interface coalescence under the influence of an electric field. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 215, 101-123.	2.3	39
220	Drop–drop coalescence in an electric field: the effects of applied electric field and electrode geometry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 219, 253-279.	2.3	112
221	Experimental studies of deformation and break-up of aqueous drops in high electric fields. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 225, 193-210.	2.3	73
222	Forces between Polystyrene Particles in Water Using the AFM:Â Pull-Off Force vs Particle Size. Langmuir, 2002, 18, 5741-5748.	1.6	55
223	Electrocoalesce-separators for the separation of aqueous drops from a flowing dielectric viscous liquid. Separation and Purification Technology, 2002, 29, 63-77.	3.9	38
224	Electrostatic and hydrodynamic separation of aqueous drops in a flowing viscous oil. Chemical Engineering and Processing: Process Intensification, 2002, 41, 649-657.	1.8	31
225	Impact attrition of particulate solids. Part 1: A theoretical model of chipping. Chemical Engineering Science, 2002, 57, 3659-3669.	1.9	229
226	Impact attrition of particulate solids. Part 2: Experimental work. Chemical Engineering Science, 2002, 57, 3671-3686.	1.9	103
227	Micro-Structures and Macro-Stresses in Sheared Granular Matter. , 2002, , .		0
228	Size Effects in a Slowly Sheared Granular Media. Journal of Applied Mechanics, Transactions ASME, 2001, 68, 772-775.	1.1	28
229	Deformation and break-up of aqueous drops in dielectric liquids in high electric fields. Journal of Electrostatics, 2001, 51-52, 463-469.	1.0	69
230	Electro-spraying of a highly conductive and viscous liquid. Journal of Electrostatics, 2001, 51-52, 494-501.	1.0	24
231	Electrostatic enhancement of coalescence of water droplets in oil: a review of the current understanding. Chemical Engineering Journal, 2001, 84, 173-192.	6.6	372
232	Breakage patterns of agglomerates. Powder Technology, 2001, 120, 232-243.	2.1	121
233	Shear resistance of granular media containing large inclusions. , 2001, , 36-38.		2
234	Attrition of granular solids in a shear cell. Chemical Engineering Science, 2000, 55, 5445-5456.	1.9	56

#	Article	IF	Citations
235	Attrition of sorbents during fluidized bed calcination and sulphation. Powder Technology, 2000, 107, 153-167.	2.1	116
236	Distinct element analysis of bulk crushing: effect of particle properties and loading rate. Powder Technology, 2000, 109, 241-254.	2.1	58
237	A review of attrition of fluid cracking catalyst particles. Advanced Powder Technology, 2000, 11, 145-174.	2.0	74
238	Production of Agglomerates of Well-Defined Structures and Bond Properties Using a Novel Technique. Chemical Engineering Research and Design, 2000, 78, 55-60.	2.7	14
239	Methodology for Investigating the Mechanical Strength of Reforming Catalyst Beads. Oil and Gas Science and Technology, 2000, 55, 67-85.	1.4	40
240	Electrification of an elastic sphere by repeated impacts on a metal plate. Journal Physics D: Applied Physics, 2000, 33, 2311-2319.	1.3	144
241	Breakage of macroporous alumina beads under compressive loading: simulation and experimental validation. Powder Technology, 1999, 105, 57-65.	2.1	29
242	Effect of interface energy on the impact strength of agglomerates. Powder Technology, 1999, 105, 66-73.	2.1	103
243	High speed video image analysis of flow of fine particles in fluidized bed jets. Advanced Powder Technology, 1998, 9, 229-243.	2.0	9
244	Disintegration of weak lactose agglomerates for inhalation applications. International Journal of Pharmaceutics, 1998, 172, 199-209.	2.6	64
245	The study of the performance of an electrostatic valve used for bulk transport of particulate materials. IEEE Transactions on Industry Applications, 1997, 33, 871-878.	3.3	10
246	Distinct element simulation of impact breakage of lactose agglomerates. Advanced Powder Technology, 1997, 8, 15-37.	2.0	108
247	A Model of Attrition in the Jetting Region of Fluidised Beds. KONA Powder and Particle Journal, 1996, 14, 5-15.	0.9	17
248	Impact breakage of poly-methylmethacrylate (PMMA) extrudates: I. Chipping mechanism. Advanced Powder Technology, 1996, 7, 183-197.	2.0	48
249	Measurement of jet angles in fluidized beds. Powder Technology, 1995, 85, 221-226.	2.1	21
250	Attrition of FCC powder in the jetting region of a fluidized bed. Powder Technology, 1994, 80, 175-178.	2.1	37
251	Use of nanoindentation to assess potential attrition of particulate solids. Tribology International, 1993, 26, 305-310.	3.0	17
252	Impact attrition of sodium carbonate monohydrate crystals. Powder Technology, 1993, 76, 15-22.	2.1	71

#	Article	IF	CITATIONS
253	An electromechanical valve for solids. Powder Technology, 1992, 73, 21-35.	2.1	18
254	Effect of the electrical clamping forces on the mechanics of particulate solids. Powder Technology, 1991, 65, 37-49.	2.1	10
255	Influence of processing conditions on attrition of NaCl crystals. Powder Technology, 1991, 65, 311-320.	2.1	47
256	A critique of two models for cyclone performance. AICHE Journal, 1991, 37, 285-289.	1.8	52
257	An Electromechanical Valve for Solids. KONA Powder and Particle Journal, 1991, 9, 113-123.	0.9	8
258	The behaviour of large jetsam particles in fluidised beds. Powder Technology, 1987, 52, 263-266.	2.1	2
259	Impact attrition of sodium chloride crystals. Chemical Engineering Science, 1987, 42, 843-853.	1.9	54
260	Observations on impact attrition of granular solids. Powder Technology, 1986, 49, 53-57.	2.1	46
261	Comparison of Techniques for Measuring the Size of Fine non-spherical particles. Particle and Particle Systems Characterization, 1984, 1, 45-52.	1.2	21
262	Jet Penetration into a Fluidized Bed at High Temperature. Industrial & Engineering Chemistry Fundamentals, 1980, 19, 440-440.	0.7	4
263	The study of the performance of an electrostatic valve used for bulk transport of particulate materials. , 0, , .		4