Lignesh Durai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7409623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial. Journal of Nanomedicine & Nanotechnology, 2015, 06, .	1.1	164
2	One-step solvothermal synthesis of nanoflake-nanorod WS2 hybrid for non-enzymatic detection of uric acid and quercetin in blood serum. Materials Science and Engineering C, 2020, 107, 110217.	7.3	48
3	A facile, solid-state reaction assisted synthesis of a berry-like NaNbO ₃ perovskite structure for binder-free, highly selective sensing of dopamine in blood samples. New Journal of Chemistry, 2019, 43, 11994-12003.	2.8	43
4	Facile synthesis of large area pebble-like β-NaFeO2 perovskite for simultaneous sensing of dopamine, uric acid, xanthine and hypoxanthine in human blood. Materials Science and Engineering C, 2020, 109, 110631.	7.3	42
5	Record-High Responsivity and Detectivity of a Flexible Deep-Ultraviolet Photodetector Based on Solid State-Assisted Synthesized hBN Nanosheets. ACS Applied Electronic Materials, 2021, 3, 1162-1169.	4.3	31
6	Electrochemical properties of BiFeO 3 nanoparticles: Anode material for sodium-ion battery application. Materials Science in Semiconductor Processing, 2017, 68, 165-171.	4.0	29
7	Vertically Aligned Few-Layer Crumpled MoS ₂ Hybrid Nanostructure on Porous Ni Foam toward Promising Binder-Free Methanol Electro-Oxidation Application. Energy & Fuels, 2021, 35, 10169-10180.	5.1	24
8	Ultra-selective, trace level detection of As3+ ions in blood samples using PANI coated BiVO4 modified SPCE via differential pulse anode stripping voltammetry. Materials Science and Engineering C, 2020, 111, 110806.	7.3	23
9	A non-noble, low cost, multicomponent electrocatalyst based on nickel oxide decorated AC nanosheets and PPy nanowires for the direct methanol oxidation reaction. International Journal of Hydrogen Energy, 2022, 47, 3099-3107.	7.1	23
10	Facile Fabrication of P(Electrodeposition)/N(Solvothermal) 2Dâ€WS ₂ â€Homojunction Based High Performance Photo Responsive, Strain Modulated Piezoâ€Phototronic Diode. ChemNanoMat, 2019, 5, 1521-1530.	2.8	22
11	Highly Stable NiCoZn Ternary Mixed-Metal-Oxide Nanorods as a Low-Cost, Non-Noble Electrocatalyst for Methanol Electro-Oxidation in Alkaline Medium. Energy & Fuels, 2021, 35, 12507-12515.	5.1	21
12	Simultaneous sensing of copper, lead, cadmium and mercury traces in human blood serum using orthorhombic phase aluminium ferrite. Materials Science and Engineering C, 2020, 112, 110865.	7.3	20
13	Electrochemical properties of Na0.5Bi0.5TiO3 perovskite as an anode material for sodium ion batteries. Journal of Materials Science, 2019, 54, 13236-13246.	3.7	19
14	Highly selective trace level detection of Atrazine in human blood samples using lead-free double perovskite Al2NiCoO5 modified electrode via differential pulse voltammetry. Sensors and Actuators B: Chemical, 2020, 325, 128792.	7.8	19
15	A Wearable PVA Film Supported TiO ₂ Nanoparticles Decorated NaNbO ₃ Nanoflakesâ€Based SERS Sensor for Simultaneous Detection of Metabolites and Biomolecules in Human Sweat Samples. Advanced Materials Interfaces, 2022, 9, .	3.7	18
16	Facile synthesis of biomass-derived sulfonated carbon microspheres and nanosheets for the electrochemical detection of glutathione in biological samples. Materials Letters, 2021, 282, 128683.	2.6	15
17	One-step solid-state reaction synthesis of β-NaFeO2 nanopebble as high capacity cathode material for sodium ion batteries. Materials Letters, 2020, 270, 127739.	2.6	14
18	Polyaniline Sheathed Black Phosphorous: A Novel, Advanced Platform for Electrochemical Sensing Applications. Electroanalysis, 2020, 32, 238-247.	2.9	13

LIGNESH DURAI

#	Article	IF	CITATIONS
19	One Pot Hydrothermal Synthesis of Large Area Nano Cube Like ZnSnO ₃ Perovskite for Simultaneous Sensing of Uric Acid and Dopamine Using Differential Pulse Voltammetry. IEEE Sensors Journal, 2020, 20, 13212-13219.	4.7	13
20	Silica embedded carbon nanosheets derived from biomass acorn cupule for non-enzymatic, label-free, and wide range detection of α 1-acid glycoprotein in biofluids. Analytica Chimica Acta, 2021, 1169, 338598.	5.4	11
21	One-Pot Synthesis of rGO Supported Nb ₂ O ₅ Nanospheres for Ultra-Selective Sensing of Bisphenol a and Hydrazine in Water Samples. IEEE Sensors Journal, 2021, 21, 4152-4159.	4.7	10
22	A low-cost and facile electrochemical sensor for the trace-level recognition of flutamide in biofluids using large-area bimetallic NiCo ₂ O ₄ micro flowers. New Journal of Chemistry, 2022, 46, 3383-3391.	2.8	10
23	Stripping voltammetry and chemometrics assisted ultra-selective, simultaneous detection of trace amounts of heavy metal ions in aqua and blood serum samples. Sensors and Actuators Reports, 2022, 4, 100097.	4.4	10
24	3D, large-area NiCo2O4 microflowers as a highly stable substrate for rapid and trace level detection of flutamide in biofluids via surface-enhanced Raman scattering (SERS). Mikrochimica Acta, 2021, 188, 371.	5.0	9
25	Highly Sensitive Electrochemical Impedance- Based Biosensor for Label-Free and Wide Range Detection of Fibrinogen Using Hydrothermally Grown AlFeO ₃ Nanospheres Modified Electrode. IEEE Sensors Journal, 2021, 21, 4160-4166.	4.7	8
26	One-pot hydrothermal synthesis of NiCoZn a ternary mixed metal oxide nanorod based electrochemical sensor for trace level recognition of dopamine in biofluids. Materials Letters, 2021, 298, 130044.	2.6	8
27	Label-free wide range electrochemical detection of β-carotene using solid state assisted synthesis of hexagonal boron nitride nanosheets. New Journal of Chemistry, 2020, 44, 15919-15927.	2.8	7
28	Thermal decomposition assisted one-step synthesis of high surface area NiCoP nanospheres for simultaneous sensing of Lead, Mercury and Cadmium ions in groundwater samples. Journal of Electroanalytical Chemistry, 2020, 861, 113937.	3.8	7
29	Highly selective trace level detection of DNA damage biomarker using iron-based MAX compound modified screen-printed carbon electrode using differential pulse voltammetry. Sensors and Actuators Reports, 2021, 3, 100057.	4.4	5
30	Spinel structured MgAl2O4 nanoparticles as a low-cost and stable SERS substrate for rapid simultaneous detection of neurological drugs in biofluids. Ceramics International, 2022, 48, 18667-18675.	4.8	5
31	Facile in-situ preparation of few-layered reduced graphene oxide – niobium pentoxide composite for non-enzymatic glucose monitoring. , 2018, , .		3
32	Ultra-Selective and Wide Range Detection of D-Mannitol in Human Blood Samples via Differential Pulse Voltammetry Technique Using MgAl ₂ O ₄ Perovskite Modified Electrode. IEEE Sensors Journal, 2021, 21, 5736-5742.	4.7	3
33	Detection of γ-Radiations using Lead Sulfide Nanostructures: Through Optical Properties. International Journal of Scientific and Engineering Research, 2017, 8, 1910-1915.	0.1	0